Name: \qquad

Please show all work.

1. Suppose $f: X \rightarrow Y$ is a function and $A, B \subseteq X$. Prove that $f_{*}(A) \backslash f_{*}(B) \subseteq f_{*}(A \backslash B)$. Provide a concrete counter example illustrating why containment the other way fails.
2. Suppose $f: X \rightarrow Y$ is a function and $C, D \subseteq Y$. Prove that $C \subseteq D \Rightarrow f^{*}(C) \subseteq f^{*}(D)$. Provide a concrete counter example illustrating why the converse fails.
3. Prove that if $g \circ f$ is $1-1$, then f is 1-1. Provide a concrete counterexample of how g need not be $1-1$, even if $g \circ f$ is the identity function - make sure you specify the domains and co-domains.
4. Define two points in $\mathbf{R}^{2} \backslash\{[0,0]\}$ to be related when one is a nonzero scalar multiple of the other. In other words $[x, y] \sim\left[x^{\prime}, y^{\prime}\right] \Leftrightarrow(\exists c \in \mathbf{R} \backslash\{0\})\left[[x, y]=\left[c x^{\prime}, c y^{\prime}\right]\right]$. Prove that this is an equivalence relation and describe geometrically the equivalence classes. Sketch.
5. Let $S=\left\{x \in \mathbf{Q}:(\exists n \in \mathbf{N})\left[x=(-1)^{n} n /(n+1)\right]\right\}$. If they exist, what are the least and greatest elements of S. For S as a subset of \mathbf{Q}, same question for $\sup S$ and $\inf S$. Prove your assertions about the least element and the infimum.
6. Prove that if m is the greatest element of a partially ordered set A, then $m=\sup A$.

1	2	3	4	5	6	total (60)	$\%$

Prelim. course grade:

