Name: ____

Please show all work.

- 1. Prove by induction that $n! \ge 2^n$ for all natural numbers $n \ge 4$.
- 2. Prove that $(p \to (q \land \neg q)) \to \neg p$ is a tautology.
- 3. Negate the statement $(\exists y)[p(y) \land (\forall x)[\neg q(x) \rightarrow r(x)]].$ Simplify.
- Prove that any interval in R is a set. You may assume R is a set. Hint: you may need to look at some cases.
- 5. Prove or disprove $(\forall A)[B \in \mathscr{P}(A)] \Rightarrow B = \varnothing$.
- 6. Prove or disprove $(A \cup C) \times (B \cup D) \subseteq (A \times B) \cup (C \times D)$.

1	2	3	4	5	6	total (60)	%

Prelim. course grade: %