Name: _

Please show all work.

- 1. Prove by induction that $4^n > n^4$ for all natural numbers $n \ge 5$.
- 2. Determine whether each of the statements is a tautology, a contradiction or neither.

(a) $((p \to q) \to p) \to q$ (b) $((p \lor q) \to q) \to p$

- 3. Negate the statement $(\forall x)(\exists y)(\forall z)[p(x,y) \leftrightarrow q(y,z)]$ and simplify.
- 4. Suppose $f: \mathbf{R} \to \mathbf{R}$ is twice continuously differentiable function. Prove that the following collections are sets. You may assume \mathbf{R} is a set.
 - (a) zeros of f (b) critical points of f (c) inflection points of f
- 5. Prove that $(A \setminus B) \times (C \setminus D) \subseteq (A \times C) \setminus (B \times D)$. Provide a concrete counter example illustrating why containment the other way fails.
- 6. Suppose $f: X \to Y$ is a function and $A, B \subseteq X$. Prove that $f_*(A \cap B) \subseteq f_*(A) \cap f_*(B)$. Provide a concrete counter example illustrating why containment the other way fails.
- 7. Suppose $f: X \to Y$ is a function and $C, D \subseteq Y$. Prove that $f^*(C \cap D) = f^*(C) \cap f^*(D)$.
- 8. Let $\pi_1: \mathbf{R}^2 \to \mathbf{R}$ be the natural projection to the first coordinate, i.e. $\pi_1([x, y]) = x$. Define two points in \mathbf{R}^2 to be equivalent when their values under π_1 are the same. Prove that this is an equivalence relation. Describe geometrically the equivalence classes. Sketch.
- 9. Prove that if $g \circ f$ is onto, then g is onto. Provide a concrete counterexample of how f need not be onto, even if $g \circ f$ is the identity function make sure you specify the domains and co-domains.
- 10. Suppose $S = \{x \in \mathbf{Q}: x^3 < 0\}$. If they exist, what are the least and greatest elements of S. For S as a subset of \mathbf{R} , same question for $\sup S$ and $\inf S$. Prove your assertions.

1	2	3	4	5	6	7	8	9	10	total (100)