Name: \qquad
Please show all work.

1. Prove by induction that $4^{n}>n^{4}$ for all natural numbers $n \geq 5$.
2. Determine whether each of the statements is a tautology, a contradiction or neither.

$$
\text { (a) }((p \rightarrow q) \rightarrow p) \rightarrow q \quad \text { (b) }((p \vee q) \rightarrow q) \rightarrow p
$$

3. Negate the statement $(\forall x)(\exists y)(\forall z)[p(x, y) \leftrightarrow q(y, z)]$ and simplify.
4. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is twice continuously differentiable function. Prove that the following collections are sets. You may assume \mathbf{R} is a set.
(a) zeros of f
(b) critical points of f
(c) inflection points of f
5. Prove that $(A \backslash B) \times(C \backslash D) \subseteq(A \times C) \backslash(B \times D)$. Provide a concrete counter example illustrating why containment the other way fails.
6. Suppose $f: X \rightarrow Y$ is a function and $A, B \subseteq X$. Prove that $f_{*}(A \cap B) \subseteq f_{*}(A) \cap f_{*}(B)$. Provide a concrete counter example illustrating why containment the other way fails.
7. Suppose $f: X \rightarrow Y$ is a function and $C, D \subseteq Y$. Prove that $f^{*}(C \cap D)=f^{*}(C) \cap f^{*}(D)$.
8. Let $\pi_{1}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be the natural projection to the first coordinate, i.e. $\pi_{1}([x, y])=x$. Define two points in \mathbf{R}^{2} to be equivalent when their values under π_{1} are the same. Prove that this is an equivalence relation. Describe geometrically the equivalence classes. Sketch.
9. Prove that if $g \circ f$ is onto, then g is onto. Provide a concrete counterexample of how f need not be onto, even if $g \circ f$ is the identity function - make sure you specify the domains and co-domains.
10. Suppose $S=\left\{x \in \mathbf{Q}: x^{3}<0\right\}$. If they exist, what are the least and greatest elements of S. For S as a subset of \mathbf{R}, same question for $\sup S$ and $\inf S$. Prove your assertions.

1	2	3	4	5	6	7	8	9	10	total (100)

