Name: \qquad
Please show all work.

1. Let P be the plane $x+2 y+3 z=0$ in \mathbf{R}^{3}.
(a) Explain why P is a subspace of \mathbf{R}^{3}.
(b) Find an orthonormal basis for P.
2. Find an orthonormal basis for the vector space of all real polynomials of degree ≤ 1 with respect to the inner product $\langle p(t), q(t)\rangle=\int_{0}^{1} p(t) q(t) d t$.
3. Let $A=\left[\begin{array}{llll}2 & 3 & 0 & 2 \\ 4 & 3 & 2 & 1 \\ 6 & 5 & 0 & 3 \\ 7 & 0 & 0 & 4\end{array}\right]$ and define $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ by $T(\mathbf{x})=A \mathbf{x}$.
(a) Compute the determinant of A (show work).
(b) Extra credit: What can you conclude about T from your answer to part (a)?
4. Let $A=\left[\begin{array}{rr}2 & 4 \\ 1 & -1\end{array}\right]$.
(a) Find the eigenvalues of A and corresponding eigenvectors. Let S be the matrix whose columns are eigenvectors of A. Compute $A S$. Verify that $S^{-1} A S$ is diagonal with entries the eigenvalues of A.
(b) Sketch the eigenspaces and give a geometrical description of the linear map $\mathbf{x} \mapsto A \mathbf{x}$.

1	2	3	4	total (40)

