Name: _

Please show all work.

1. Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
.

- (a) Find a basis for the kernel of A.
- (b) Find a basis for the image of A and sketch it.
- 2. Let $A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Express $A\mathbf{v}_1$ and $A\mathbf{v}_2$ as linear combinations of \mathbf{v}_1 and \mathbf{v}_2 . What matrix represents the linear map $\mathbf{x} \mapsto A\mathbf{x}$ relative to the basis $[\mathbf{v}_1, \mathbf{v}_2]$?
- 3. Let P_n be the vector space of all real polynomials p(t) with degree $\leq n$ and let Z_n be the set of all p(t) in P_n such that p(0) = 0. Prove that
 - (a) Z_n is a vector subspace of P_n .
 - (b) T defined by $T(p(t)) = \int_0^t p(s) ds$ is a linear map from P_n to Z_{n+1} .
- 4. (c) Find the matrix for T with respect to bases $[1, t, t^2]$ for P_2 and $[t, t^2, t^3]$ for Z_3 .
 - (d) Prove that T is invertible. Find a formula and the matrix for T^{-1} .

1	2	3	4	total (40)