Name: \qquad
Please show all work.

1. Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1\end{array}\right]$.
(a) Find a basis for the kernel of A.
(b) Find a basis for the image of A and sketch it.
2. Let $A=\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Express $A \mathbf{v}_{1}$ and $A \mathbf{v}_{2}$ as linear combinations of \mathbf{v}_{1} and \mathbf{v}_{2}. What matrix represents the linear map $\mathbf{x} \mapsto A \mathbf{x}$ relative to the basis $\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$?
3. Let P_{n} be the vector space of all real polynomials $p(t)$ with degree $\leq n$ and let Z_{n} be the set of all $p(t)$ in P_{n} such that $p(0)=0$. Prove that
(a) Z_{n} is a vector subspace of P_{n}.
(b) T defined by $T(p(t))=\int_{0}^{t} p(s) d s$ is a linear map from P_{n} to Z_{n+1}.
4. (c) Find the matrix for T with respect to bases $\left[1, t, t^{2}\right]$ for P_{2} and $\left[t, t^{2}, t^{3}\right]$ for Z_{3}.
(d) Prove that T is invertible. Find a formula and the matrix for T^{-1}.

1	2	3	4	total (40)

