Name: \qquad
Please show all work. Check your answers! -

1. Consider the linear system $\left[\begin{array}{l}2 x+4 y+6 z=0 \\ 4 x+5 y+6 z=3 \\ 7 x+8 y+9 z=6\end{array}\right]$.
(a) Use Gauss-Jordan elimination to find all solutions. Show steps. Describe and sketch the solution set.
(b) Can you expect some solutions to this system for arbitrary right-hand-sides?
2. Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is a linear map and we know its values at some two (column) vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^{2} that not scalar multiples of one another: $T(\mathbf{u})=a, T(\mathbf{v})=b$.
(a) Let $S=[\mathbf{u}, \mathbf{v}]$. Explain why S is an invertible matrix. What is $\operatorname{rref}(S)$?
(b) Let A be the matrix that represents T. Let $B=[a, b]$. Explain why $A S=B$.

Hint: Since $T(\mathbf{x})=A \mathbf{x}$ for all \mathbf{x} in $\mathbf{R}^{2}, A=\left[A \mathbf{e}_{1}, A \mathbf{e}_{2}\right]=\left[T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right)\right]$, so compute $A S \mathbf{e}_{i}=T\left(S \mathbf{e}_{i}\right)=\ldots$.
3. Preceding problem continued:
(c) Use (a) to solve the matrix equation in (b) for A.
(d) If $\mathbf{u}=\left[\begin{array}{r}2 \\ -1\end{array}\right], \mathbf{v}=\left[\begin{array}{r}3 \\ -2\end{array}\right], a=1$ and $b=-2$ use your solution in (c) to find A.
4. In each part enter a real 2×2 nonzero nonidentity matrix A such that the linear map $\mathrm{x} \mapsto A \mathrm{x}$ is as given.

(a) orthogonal reflection with respect to a line

(b) orthogonal projection to a line

(c) isotropic dilation

(d) rotation

(e) horizontal shear

1	2	3	4	total (40)

