Name: _

Please show all work. Check your answers! $\ddot{\sim}$

- 1. Consider the linear system $\begin{bmatrix} 2x + 4y + 6z = 0\\ 4x + 5y + 6z = 3\\ 7x + 8y + 9z = 6 \end{bmatrix}.$
 - (a) Use Gauss-Jordan elimination to find all solutions. Show steps. Describe and sketch the solution set.
 - (b) Can you expect some solutions to this system for arbitrary right-hand-sides?
- 2. Suppose $T: \mathbf{R}^2 \to \mathbf{R}$ is a linear map and we know its values at some two (column) vectors **u** and **v** in \mathbf{R}^2 that not scalar multiples of one another: $T(\mathbf{u}) = a, T(\mathbf{v}) = b$.
 - (a) Let $S = [\mathbf{u}, \mathbf{v}]$. Explain why S is an invertible matrix. What is $\operatorname{rref}(S)$?
 - (b) Let A be the matrix that represents T. Let B = [a, b]. Explain why AS = B.

Hint: Since $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbf{R}^2 , $A = [A\mathbf{e}_1, A\mathbf{e}_2] = [T(\mathbf{e}_1), T(\mathbf{e}_2)]$, so compute $AS\mathbf{e}_i = T(S\mathbf{e}_i) = \dots$

- 3. Preceding problem continued:
 - (c) Use (a) to solve the matrix equation in (b) for A.

(d) If
$$\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$, $a = 1$ and $b = -2$ use your solution in (c) to find A.

4. In each part enter a real 2×2 nonzero nonidentity matrix A such that the linear map $\mathbf{x} \mapsto A\mathbf{x}$ is as given.

1	2	3	4	total (40)