Name: \qquad
Please show all work. Check your answers! \because

1. Consider the linear system $\left[\begin{array}{l}2 x+4 y+6 z=0 \\ 3 x+4 y+5 z=4 \\ 6 x+7 y+9 z=0\end{array}\right]$. Use Gauss-Jordan elimination to find all solutions. Show steps. Describe and sketch the solution set. Can you expect some solutions to this system for arbitrary right-hand-sides? Explain.
2. Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is a linear map and we know its values at some two (column) vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^{2} that not scalar multiples of one another: $T(\mathbf{u})=a, T(\mathbf{v})=b$.
(a) Let $S=[\mathbf{u}, \mathbf{v}]$. Explain why S is an invertible matrix. What is $\operatorname{rref}(S)$?
(b) Let A be the matrix that represents T. Let $B=[a, b]$. Explain why $A S=B$.

Hint: Since $T(\mathbf{x})=A \mathbf{x}$ for all \mathbf{x} in $\mathbf{R}^{2}, A=\left[A \mathbf{e}_{1}, A \mathbf{e}_{2}\right]=\left[T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right)\right]$, so compute $A S \mathbf{e}_{i}=T\left(S \mathbf{e}_{i}\right)=\ldots$.
3. Preceding problem continued:
(c) Use (a) to solve the matrix equation in (b) for A.
(d) If $\mathbf{u}=\left[\begin{array}{l}3 \\ 4\end{array}\right], \mathbf{v}=\left[\begin{array}{l}5 \\ 6\end{array}\right], a=1$ and $b=-2$ use your solution in (c) to find A.
4. In each part enter a real 2×2 nonzero nonidentity matrix A such that the linear map $\mathrm{x} \mapsto A \mathrm{x}$ is as given.

CONTINUED ON THE OTHER SIDE

1	2	3	4	5	6	7	8	total (80)

5. Suppose V is an inner product space and U is a subspace of V. Prove that U^{\perp} is also a subspace of V. Show that any vector in V can be expressed uniquely as a sum of two vectors, one in U and the other in U^{\perp} (this is the main idea behind Gram-Schmidt).
6. Let P_{2} be the vector space of all real polynomials $p(t)$ with degree ≤ 2 and let $\varepsilon: P_{2} \rightarrow \mathbf{R}$ be the evaluation map: $\varepsilon(p(t))=p(0)$.
(a) Prove that ε is linear. What is the rank of ε ? What is the dimension of $\operatorname{ker} \varepsilon$?
(b) Describe $\operatorname{ker} \varepsilon$ and find an orthonormal basis for it relative to the inner product

$$
\langle p(t), q(t)\rangle=\int_{0}^{1} p(t) q(t) d t .
$$

7. Let $A=\left[\begin{array}{llll}2 & 4 & 0 & 0 \\ 6 & 7 & 2 & 0 \\ 3 & 0 & 0 & 4 \\ 3 & 2 & 1 & 0\end{array}\right]$ and define $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ by $T(\mathbf{x})=A \mathbf{x}$. Compute the determinant of A (show work). What can you conclude about T from your answer?
8. Let $A=\left[\begin{array}{rr}-7 & 10 \\ -5 & 8\end{array}\right]$.
(a) Find the eigenvalues of A and corresponding eigenvectors. Let S be the matrix whose columns are eigenvectors of A. Compute $A S$. Verify that $S^{-1} A S$ is diagonal with entries the eigenvalues of A.
(b) Sketch the eigenspaces and give a geometrical description of the linear map $\mathbf{x} \mapsto A \mathbf{x}$.
