Name: _

Please show all work.

- 1. Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 1 & 0 \end{bmatrix}$ and $b = \begin{bmatrix} 3 \\ -3 \\ 3 \end{bmatrix}$. Find the least squares solution x^* to Ax = b and verify that $b Ax^*$ is orthogonal to the image of A.
- 2. Let P_3 be the space of all real polynomials p(t) with degree ≤ 3 and let $T: P_3 \to P_3$ be the linear map given by T(p) = tp'' + p. Find det T.

3. Let
$$A = \begin{bmatrix} -7 & 3 \\ -18 & 8 \end{bmatrix}$$
.

- (a) Find the eigenvalues of A and corresponding eigenvectors.
- (b) Let S be the matrix whose columns are eigenvectors of A. Verify that $S^{-1}AS$ is diagonal with entries the eigenvalues of A.
- (c) Sketch the eigenspaces and give a geometrical description of the linear map $\mathbf{x} \mapsto A\mathbf{x}$.
- 4. Suppose A is an $n \times n$ matrix with n linearly independent eigenvectors corresponding to eigenvalues $\lambda_k (1 \le k \le n)$. Find det A and prove your assertion.

1	2	3	4	total (40)