Name: \qquad
Please show all work.

1. Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 2 \\ 1 & 0\end{array}\right]$ and $b=\left[\begin{array}{r}3 \\ -3 \\ 3\end{array}\right]$. Find the least squares solution x^{*} to $A x=b$ and verify that $b-\bar{A} x^{*}$ is orthogonal to the image of A.
2. Let P_{3} be the space of all real polynomials $p(t)$ with degree ≤ 3 and let $T: P_{3} \rightarrow P_{3}$ be the linear map given by $T(p)=t p^{\prime \prime}+p$. Find $\operatorname{det} T$.
3. Let $A=\left[\begin{array}{rr}-7 & 3 \\ -18 & 8\end{array}\right]$.
(a) Find the eigenvalues of A and corresponding eigenvectors.
(b) Let S be the matrix whose columns are eigenvectors of A. Verify that $S^{-1} A S$ is diagonal with entries the eigenvalues of A.
(c) Sketch the eigenspaces and give a geometrical description of the linear map $\mathbf{x} \mapsto A \mathbf{x}$.
4. Suppose A is an $n \times n$ matrix with n linearly independent eigenvectors corresponding to eigenvalues $\lambda_{k}(1 \leq k \leq n)$. Find $\operatorname{det} A$ and prove your assertion.

1	2	3	4	total (40)

