Name: \qquad
Please show all work.

1. Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4\end{array}\right]$. Find a basis for the kernel of A. What is the image of A ?
2. Let P_{3} be the space of all real polynomials $p(t)$ with degree ≤ 3 and let $T: P_{3} \rightarrow P_{3}$ be the linear map given by $T(p)=p^{\prime \prime}-k p$, where k is a constant. Find the matrix that represents T with respect to the basis $\left[1, t, t^{2}, t^{3}\right]$.
3. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Express $A \mathbf{v}_{1}$ and $A \mathbf{v}_{2}$ as linear combinations of \mathbf{v}_{1} and \mathbf{v}_{2}. What matrix represents the linear map $\mathbf{x} \mapsto A \mathbf{x}$ relative to the basis $\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$?
4. Prove that $\mathbf{v}_{1}=\left[\begin{array}{r}-3 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right]$ form a basis for the plane $x+2 y+3 z=0$. Let M be the matrix with columns \mathbf{v}_{1} and \mathbf{v}_{2}. Find the QR factorization of M.

1	2	3	4	total (40)

