Name: _

Please show all work.

- 1. Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
 - (a) Find all solutions to Ax = b. Sketch/describe the solution set.
 - (b) Can you expect some solutions to Ax = b for any b? Explain.
- 2. Suppose A is a 3×2 matrix with trivial kernel.
 - (a) Given a vector b, what are all the possibilities for the number of solutions to Ax = b? Explain.
 - (b) Give concrete examples of A and b that match your predictions above.
- 3. Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be orthogonal projection to the main diagonal (graph of y = x) in \mathbf{R}^2 .
 - (a) Find a matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbf{R}^2 .
 - (b) Express the kernel and the image of T as spans of vectors. Sketch.
- 4. Suppose $T: \mathbf{R}^2 \to \mathbf{R}$ is a linear map. Let $a = T(2\mathbf{e}_1 + 3\mathbf{e}_2), b = T(3\mathbf{e}_1 + 4\mathbf{e}_2)$, where $\mathbf{e}_1, \mathbf{e}_2$ is the standard basis for \mathbf{R}^2 . Find a matrix A, in terms of a and b, such that $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbf{R}^2 .

1	2	3	4	total (40)