Name: \qquad
Please show all work.

1. Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9\end{array}\right], b=\left[\begin{array}{l}5 \\ 6 \\ 7\end{array}\right]$. Find all solutions to $A x=b$. Sketch/describe the solution set. Compute $\operatorname{det}(A)$. Can you expect some solutions to $A x=b$ for any b ? Explain.
2. Let $A=\left[\begin{array}{llll}1 & 2 & 5 & 6 \\ 1 & 1 & 7 & 8\end{array}\right]$. Find a basis for the kernel of A. What is the image of A ?
3. Find the matrix A relative to the standard basis for rotation by -90 degrees. Same for reflection with respect to the main diagonal. In each case compute A^{4} and explain your result geometrically.
4. Let P_{2} be the space of all real polynomials $p(t)$ with degree ≤ 2 and let $T: P_{2} \rightarrow P_{2}$ be the linear map given by $T(p)=p(t+1)-p(t-1)$. Find the matrix that represents T with respect to the basis $\left[1, t, t^{2}\right]$.
5. Let $A=\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. What matrix represents the linear map $\mathbf{x} \mapsto A \mathbf{x}$ relative to the basis $\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$? Express $A \mathbf{v}_{1}$ and $A \mathbf{v}_{2}$ as linear combinations of \mathbf{v}_{1} and \mathbf{v}_{2}.
6. Prove that $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$ form a basis for the plane $x+y+z=0$. Let M be the matrix with columns \mathbf{v}_{1} and \mathbf{v}_{2}. Find the QR factorization of M.
7. Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right]$ and $b=\left[\begin{array}{r}-3 \\ 3 \\ 3\end{array}\right]$. Find the least squares solution x^{*} to $A x=b$ and verify that $b-A x^{*}$ is orthogonal to the image of A.
8. (a) Let $A=\left[\begin{array}{rr}-9 & 8 \\ -12 & 11\end{array}\right]$. Find the eigenvalues of A and corresponding eigenvectors.
(b) Let S be the matrix whose columns are eigenvectors of A. Verify that $S^{-1} A S$ is diagonal with entries the eigenvalues of A.
(c) Sketch the eigenspaces and give a geometrical description of the linear map $\mathbf{x} \mapsto A \mathbf{x}$.
9. Let A be an upper-triangular matrix (all entries below the diagonal are zero). Show that $\operatorname{det}(A)$ is the product of its diagonal entries. Then show that the diagonal entries are eigenvalues of A.

1	2	3	4	5	6	7	8	9	total (90)

