Name: _

Please show all work.

- 1. Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix}$, $b = \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}$. Find all solutions to Ax = b. Sketch/describe the solution set. Compute det(A). Can you expect some solutions to Ax = b for any b? Explain.
- 2. Let $A = \begin{bmatrix} 1 & 2 & 5 & 6 \\ 1 & 1 & 7 & 8 \end{bmatrix}$. Find a basis for the kernel of A. What is the image of A?
- 3. Find the matrix A relative to the standard basis for rotation by -90 degrees. Same for reflection with respect to the main diagonal. In each case compute A^4 and explain your result geometrically.
- 4. Let P_2 be the space of all real polynomials p(t) with degree ≤ 2 and let $T: P_2 \rightarrow P_2$ be the linear map given by T(p) = p(t+1) p(t-1). Find the matrix that represents T with respect to the basis $[1, t, t^2]$.
- 5. Let $A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. What matrix represents the linear map $\mathbf{x} \mapsto A\mathbf{x}$ relative to the basis $[\mathbf{v}_1, \mathbf{v}_2]$? Express $A\mathbf{v}_1$ and $A\mathbf{v}_2$ as linear combinations of \mathbf{v}_1 and \mathbf{v}_2 .
- 6. Prove that $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ form a basis for the plane x + y + z = 0. Let M be the matrix with columns \mathbf{v}_1 and \mathbf{v}_2 . Find the QR factorization of M.
- 7. Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$ and $b = \begin{bmatrix} -3 \\ 3 \\ 3 \end{bmatrix}$. Find the least squares solution x^* to Ax = b and verify that $b Ax^*$ is orthogonal to the image of A.
- 8. (a) Let $A = \begin{bmatrix} -9 & 8 \\ -12 & 11 \end{bmatrix}$. Find the eigenvalues of A and corresponding eigenvectors.
 - (b) Let S be the matrix whose columns are eigenvectors of A. Verify that $S^{-1}AS$ is diagonal with entries the eigenvalues of A.
 - (c) Sketch the eigenspaces and give a geometrical description of the linear map $\mathbf{x} \mapsto A\mathbf{x}$.
- 9. Let A be an upper-triangular matrix (all entries below the diagonal are zero). Show that det(A) is the product of its diagonal entries. Then show that the diagonal entries are eigenvalues of A.

[1	2	3	4	5	6	7	8	9	total (90)