Name: \qquad
Please show all work and justify your answers.

1. (10 pts.) Determine whether the following are vector subspaces of the domain of the linear map $x \mapsto A x$. If yes, explain. If no, provide a concrete counterexample.
(a) The solution set of $A x=b$
(b) The kernel of A
2. (10 pts.) Determine whether the matrices $\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$ and $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ are similar. Explain.
3. (10 pts.) Let L be the plane $x_{1}+x_{2}+x_{3}=0$ and let $v=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

Define a linear transformation T of L by $T x=x \times v$. What is the determinant of T ?
4. (10 pts .) Find all eigenvalues and the corresponding eigenvectors of
(a) $A=\left[\begin{array}{rr}1 & 4 \\ 2 & -1\end{array}\right]$
(b) Reflection of the plane with respect to the main diagonal.
5. (10 pts.) Suppose $A=\left[\begin{array}{rr}3 & 2 \\ 6 & -1\end{array}\right]$. It can be shown that A has eigenvalues -3 and 5 with corresponding eigenvectors $\left[\begin{array}{r}1 \\ -3\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Solve the dynamical system $x(n+1)=A x(n)$ with initial condition $x(0)=\left[\begin{array}{r}3 \\ -1\end{array}\right]$.

1	2	3	4	5	total (50)
Prelim. course grade: $\%$					

