Name: \qquad

Please show all work and justify your answers.

1. (10 pts.) Let $A=\left[\begin{array}{rrr}3 & -1 & 4 \\ -1 & 2 & -2\end{array}\right]$ and $b=\left[\begin{array}{r}5 \\ -5\end{array}\right]$.
(a) Find all solutions to $A x=b$
(b) Describe and sketch the solution set.
2. (10 pts.) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the orthogonal projection to the plane $x_{1}=0$ followed by a reflection with respect to the main diagonal $x_{2}=x_{3}$ of that plane.
(a) Find the matrix for T with respect to the standard basis of \mathbf{R}^{3}.
(b) Describe and sketch the image and the kernel of T.
3. (10 pts.) Suppose $A \neq 0$. What are all the possibilities for the number of solutions to the linear system $A x=b$ if A is 3×1 ? If A is 1×1 ? If A is 1×3 ?
4. (10 pts.) Suppose T is a linear map such that $T\left[\begin{array}{r}3 \\ -1\end{array}\right]=\left[\begin{array}{r}5 \\ -5 \\ 3\end{array}\right]$ and $T\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{r}10 \\ 0 \\ 2\end{array}\right]$.
(a) Find the matrix for T with respect to the standard bases of \mathbf{R}^{2} and \mathbf{R}^{3}.
(b) Is T 1-1? Onto? Explain.
5. (10 pts.) Determine whether the following are vector subspaces of \mathbf{R}^{n}. If yes, explain. If no, provide a concrete counterexample.
(a) The solution set of a consistent system $A x=b$
(b) The image of A
6. (10 pts.) Determine whether the matrices $\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$ and $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ are similar.
7. (10 pts.) Let L be the plane in \mathbf{R}^{3} given by $2 x_{1}-x_{2}+3 x_{3}=0$ and let $v=\left[\begin{array}{r}2 \\ -1 \\ 3\end{array}\right]$.

Define a linear transformation T of L by $T x=v \times x$. Find a basis for L and the matrix of T with respect to this basis. What is the determinant of T ?
8. (10 pts .) Find all eigenvalues and the corresponding eigenvectors of
(a) $A=\left[\begin{array}{rr}5 & 2 \\ 4 & -2\end{array}\right]$
(b) Orthogonal projection of the plane to the line $2 x_{1}-x_{2}=0$
9. (10 pts.) Suppose $A=\left[\begin{array}{rr}2 & -3 \\ -4 & -9\end{array}\right]$. It can be shown that A has eigenvalues -10 and 3 with corresponding eigenvectors $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ and $\left[\begin{array}{r}-3 \\ 1\end{array}\right]$.
Solve the dynamical system $x(n)=A x(n-1)$ with initial condition $x(0)=\left[\begin{array}{c}11 \\ 5\end{array}\right]$.

1	2	3	4	5	6	7	8	9	total (90)

