Name:

Please show all work and justify your answers.

1. (10 pts.) Let
$$A = \begin{bmatrix} 3 & -1 & 4 \\ -1 & 2 & -2 \end{bmatrix}$$
 and $b = \begin{bmatrix} 5 \\ -5 \end{bmatrix}$.

- (a) Find all solutions to Ax = b (b) Describe and sketch the solution set.
- 2. (10 pts.) Let $T: \mathbf{R}^3 \to \mathbf{R}^3$ be the orthogonal projection to the plane $x_1 = 0$ followed by a reflection with respect to the main diagonal $x_2 = x_3$ of that plane.
 - (a) Find the matrix for T with respect to the standard basis of \mathbb{R}^3 .
 - (b) Describe and sketch the image and the kernel of T.
- 3. (10 pts.) Suppose $A \neq 0$. What are all the possibilities for the number of solutions to the linear system Ax = b if A is 3×1 ? If A is 1×1 ? If A is 1×3 ?
- 4. (10 pts.) Suppose T is a linear map such that $T\begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ -5 \\ 3 \end{bmatrix}$ and $T\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \\ 2 \end{bmatrix}$.
 - (a) Find the matrix for T with respect to the standard bases of \mathbb{R}^2 and \mathbb{R}^3 .
 - (b) Is T 1-1? Onto? Explain.
- 5. (10 pts.) Determine whether the following are vector subspaces of \mathbb{R}^n . If yes, explain. If no, provide a concrete counterexample.
 - (a) The solution set of a consistent system Ax = b
 - (b) The image of A
- 6. (10 pts.) Determine whether the matrices $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ and $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ are similar.
- 7. (10 pts.) Let L be the plane in \mathbf{R}^3 given by $2x_1 x_2 + 3x_3 = 0$ and let $v = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$.

Define a linear transformation T of L by $Tx = v \times x$. Find a basis for L and the matrix of T with respect to this basis. What is the determinant of T?

- $8.\ (10\ \mathrm{pts.})\ \mathrm{Find}$ all eigenvalues and the corresponding eigenvectors of
 - (a) $A = \begin{bmatrix} 5 & 2 \\ 4 & -2 \end{bmatrix}$ (b) Orthogonal projection of the plane to the line $2x_1 x_2 = 0$
- 9. (10 pts.) Suppose $A = \begin{bmatrix} 2 & -3 \\ -4 & -9 \end{bmatrix}$. It can be shown that A has eigenvalues -10 and 3 with corresponding eigenvectors $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} -3 \\ 1 \end{bmatrix}$.

Solve the dynamical system x(n) = Ax(n-1) with initial condition $x(0) = \begin{bmatrix} 11 \\ 5 \end{bmatrix}$.

1	2	3	4	5	6	7	8	9	total (90)
									%