Linear Algebra / MAT 2233.001
Midterm 2 / 2002.4.24 / Instructor: D. Gokhman
Name: \qquad

1. (10 pts.) Find bases for the kernel and the image of $A=\left[\begin{array}{llll}1 & 3 & 1 & 2 \\ 1 & 3 & 1 & 4\end{array}\right]$
2. (10 pts.) Let $v=(1,2,3)$ and define $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ by $T(x)=v \times x$. Find bases for the kernel and the image of T.
3. (10 pts .) Find two subspaces of \mathbf{R}^{2} whose union is not a subspace of \mathbf{R}^{2}.
4. (10 pts.) Suppose v and w are linearly independent vectors in \mathbf{R}^{3}. Define $T: \mathbf{R}^{3} \rightarrow \mathbf{R}$ by letting $T(x)=\operatorname{det}\left[\begin{array}{lll}x & v & w\end{array}\right]$. Describe the kernel of T. What is its dimension?
5. (20 pts.) Let $A=\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right]$.
(a) Find all eigenvalues of A and the corresponding eigenvectors.
(b) Find a formula for A^{n}.

1	2	3	4	5	total (60)	$\%$

