Linear Algebra / MAT 2233.001
Final exam / 2002.5. 10 / Instructor: D. Gokhman
Name: \qquad

1. (10 pts.) Let $A=\left[\begin{array}{rrr}1 & -2 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $b=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Find all solutions to $A x=b$. Describe and sketch the solution set.
2. (10 pts.) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the reflection with respect to the line $x=\sqrt{3} y$. Find the matrix A such that $T(x)=A x$ for all x. Hint: you should be able to recognize the angle of inclination of the line.
3. (10 pts.) Give an example of a 3×2 matrix A and vectors u and v such that $A x=u$ has a unique solution while $A x=v$ has no solutions.
4. (10 pts.) Suppose A is a 3×2 matrix and $A x=0$ has many solutions. What can you say about the number of solutions of $A x=b$ for an arbitrary vector b ?
5. (10 pts.) Find all linear maps $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ such that $T\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $T\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
6. (10 pts.) Suppose $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ is the orthogonal projection to the plane $x+2 y+3 z=0$. Find bases for the kernel and the image of T.
7. (10 pts .) Explain why the intersection of two subspaces of \mathbf{R}^{n} is a subspace of \mathbf{R}^{n}.
8. (10 pts.) Suppose A is a 3×3 matrix with rows u, v, w and $\operatorname{det} A=5$. Let B be 3×3 matrix with rows $u, u+v, u+v+2 w$. Use properties of determinant to find $\operatorname{det} B$.
9. (20 pts.) Let $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$.
(a) Find all eigenvalues of A and the corresponding eigenvectors.
(b) Find a formula for A^{n}.

1	2	3	4	5	6	7	8	9	total (100)	$\%$

