Name: ____

- 1. (10 pts.) Let $A = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Find all solutions to Ax = b. Describe and sketch the solution set.
- 2. (10 pts.) Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be the reflection with respect to the line $x = \sqrt{3}y$. Find the matrix A such that T(x) = Ax for all x. Hint: you should be able to recognize the angle of inclination of the line.
- 3. (10 pts.) Give an example of a 3×2 matrix A and vectors u and v such that Ax = u has a unique solution while Ax = v has no solutions.
- 4. (10 pts.) Suppose A is a 3×2 matrix and Ax = 0 has many solutions. What can you say about the number of solutions of Ax = b for an arbitrary vector b?

5. (10 pts.) Find all linear maps
$$T: \mathbf{R}^2 \to \mathbf{R}^2$$
 such that $T \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 1\\3 \end{bmatrix}$ and $T \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} 3\\1 \end{bmatrix}$.

- 6. (10 pts.) Suppose $T: \mathbb{R}^3 \to \mathbb{R}^3$ is the orthogonal projection to the plane x + 2y + 3z = 0. Find bases for the kernel and the image of T.
- 7. (10 pts.) Explain why the intersection of two subspaces of \mathbf{R}^n is a subspace of \mathbf{R}^n .
- 8. (10 pts.) Suppose A is a 3×3 matrix with rows u, v, w and det A = 5. Let B be 3×3 matrix with rows u, u + v, u + v + 2w. Use properties of determinant to find det B.
- 9. (20 pts.) Let $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$.
 - (a) Find all eigenvalues of A and the corresponding eigenvectors.
 - (b) Find a formula for A^n .

1	2	3	4	5	6	7	8	9	total (100)	%