Name:

Please show all work and box the answers, where appropriate.

- 1. (10 pts.) Take an augmented matrix $A = \begin{bmatrix} 2 & -2 & 4 & 0 \\ 1 & 1 & -2 & 2 \end{bmatrix}$.
 - (a) Use the row reduction algorithm to bring A to echelon form. Then to reduced echelon form.
 - (b) Answer the fundamental questions on existence and uniqueness of solutions of the corresponding system.
 - (c) Find all solutions.
 - (d) Sketch and describe the solution set.
- 2. (10 pts.) Let u = (1, -1, 1), v = (2, 0, 1), w = (3, 1, 1).
 - (a) Sketch span $\{u, v\}$.
 - (b) Is w in span $\{u, v\}$?
 - (c) Same with w = (3, 2, 1).
- 3. (10 pts.) For the following sequences of vectors:
 - (a) Sketch and describe the span of the sequence (except in (vi)).
 - (b) Determine whether the sequence is linearly independent. Show work or explain.

(i)
$$\begin{bmatrix} 1\\1 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\1 \end{bmatrix}$ (iii) $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$ (iv) $\begin{bmatrix} 1\\3\\-2 \end{bmatrix}$, $\begin{bmatrix} -3\\-5\\6 \end{bmatrix}$, $\begin{bmatrix} 0\\5\\-6 \end{bmatrix}$
4. (10 pts.) Suppose $f: \mathbf{R}^2 \to \mathbf{R}^3$ is linear, $f\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right) = \begin{bmatrix} 2\\4\\1 \end{bmatrix}$, $f\left(\begin{bmatrix} 1\\-1 \end{bmatrix}\right) = \begin{bmatrix} -4\\2\\1 \end{bmatrix}$.
(a) Find $f\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right)$ and $f\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right)$.

- (b) Find the matrix that represents f with respect to the standard basis.
- (c) Is f 1-1? Is f onto? Explain.
- (d) Sketch and describe the range of f.
- 5. (10 pts.)
 - (a) Suppose A, B, C, I are $n \times n$ invertible matrices and I is the identity matrix. Solve matrix equation A(CX I)B = ABC for the $n \times n$ matrix X. Simplify.

(b) Determine whether $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ is invertible, and if so, find the inverse.

1	2	3	4	5	total (50)	%