Name: _____ Pseudonym: _____ Please show all work and box the answers, where appropriate.

- 1. (10 pts.) Take an augmented matrix $A = \begin{bmatrix} 2 & 2 & 4 & 0 \\ 1 & 1 & -2 & 2 \end{bmatrix}$.
 - (a) Use the row reduction algorithm to bring A to reduced echelon form.
 - (b) Find all solutions of the corresponding system. Sketch and describe the solution set.
- 2. (10 pts.) Determine whether each sequence of vectors is linearly independent. Show work or explain.

(a)
$$\begin{bmatrix} 0\\0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix}$ (c) $\begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}$ (d) $\begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\3\\2 \end{bmatrix}, \begin{bmatrix} 3\\-6\\-7 \end{bmatrix}$
(e) $\left\{ (t+1)^2, t^2+1, t^2 \right\}$

- 3. (10 pts.) Suppose $f: \mathbf{R}^2 \to \mathbf{R}^2$ is linear, $f\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right) = \begin{bmatrix} 1\\-2 \end{bmatrix}, f\left(\begin{bmatrix} 2\\-1 \end{bmatrix}\right) = \begin{bmatrix} -2\\4 \end{bmatrix}.$
 - (a) Find the matrix that represents f with respect to the standard basis.
 - (b) Is f 1-1? Is f onto? Explain.
- 4. (10 pts.) Suppose A, B, I are $n \times n$ invertible matrices and I is the identity matrix. Solve matrix equation $A(X + I)A^{-1} = B$ for the $n \times n$ matrix X. Simplify.

5. (10 pts.) Determine whether $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ is invertible, and if so, find the inverse.

6. (10 pts.) Determine whether each of the following subsets is a vector subspace. If yes, explain. If not, give an explicit example of how an axiom fails.

(a)
$$\left\{ \begin{bmatrix} a \\ b \end{bmatrix} : a+b+1=0 \right\}$$
 (b) $\left\{ \begin{bmatrix} s+1 \\ t-1 \end{bmatrix} : s,t \text{ in } \mathbf{R} \right\}$ (c) $\left\{ \begin{bmatrix} t-2s \\ 2s-t \end{bmatrix} : s,t \ge 0 \right\}$
(d) $\{p(t): p(1)=0\}$ in \mathbf{P}_3 (e) $\{p(t): p(1)=p(0)\}$ in \mathbf{P}_3

- 7. (10 pts.) Find a basis for: (a) null $\begin{bmatrix} 1 & 0 & 3 \\ -1 & 1 & 1 \end{bmatrix}$, (b) span of the sequence in #2d. Sketch and describe both spaces.
- 8. (10 pts.) Let $A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}$. Find the characteristic polynomial, eigenvalues and eigenvectors of A. Find an invertible 2×2 matrix P and a diagonal 2×2 matrix D such that $A = PDP^{-1}$. Compute P^{-1} and verify that $A = PDP^{-1}$.

l (80)	total (8	7	6	5	4	3	2	1	