Linear Algebra / MAT 2233.901
Final / May 11, 1999 / Instructor: D. Gokhman

Name:
Please show all work.

1. (10 pts.) Describe and sketch the general solution of the system of linear equations given by the augmented matrix $\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 2\end{array}\right]$. Is the solution a subspace of \mathbf{R}^{3} ? Explain.
2. (15 pts.) For each of the following matrices describe and sketch the column space. What is the rank of each matrix?
(a) $\left[\begin{array}{rr}2 & 2 \\ 1 & -1\end{array}\right]$
(b) $\left[\begin{array}{rr}2 & -2 \\ -1 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}2 & 0 \\ 1 & 1 \\ 0 & 2\end{array}\right]$
3. (15 pts.) For each of the matrices in the preceding problem consider the corresponding linear map T. In each case, what are the dimensions of the kernel and the range of T ? Is T 1-1? Onto? Explain.
4. (15 pts.) Find the standard matrix for each linear map $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, where
(a) $n=2$ and T is the rotation by $\pi / 2$.
(b) $n=3$ and T is the rotation by π with respect to the x_{2}-axis.
(c) $n=3$ and T is the reflection with respect to the plane $x_{3}=0$.
5. (10 pts.) For which λ is the sequence $\left[\begin{array}{c}11-\lambda \\ -6\end{array}\right],\left[\begin{array}{c}18 \\ -10-\lambda\end{array}\right]$ not linearly independent?
6. (15 pts.) Suppose A, B, C are invertible $n \times n$ matrices.

Solve the following equations for an $n \times n$ matrix X. Simplify.
(a) $A X A^{-1}=B$
(b) $A B X+A=C$
(c) $A B C X C B A=I$
7. (10 pts.) Let $A=\left[\begin{array}{rrrr}1 & 2 & 2 & 4 \\ 3 & 6 & 0 & 6 \\ 5 & 10 & 4 & 14\end{array}\right]$ and $B=\left[\begin{array}{llll}1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.

It can be checked that A is row equivalent to B. Find bases for nul A and $\operatorname{col} A$.
8. (10 pts.) Find $[v]_{\mathscr{B}}$, where
(a) $v=\left[\begin{array}{r}2 \\ -3\end{array}\right]$ in \mathbf{R}^{2} and $\mathscr{B}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ -1\end{array}\right]\right\}$.
(b) $v=2+3 t$ in P_{1} and $\mathscr{B}=\{2+t, 2-t\}$.

1	2	3	4	5	6	7	8	total (100)	$\%$

