Linear Algebra / MAT2233.001

Midterm 2 / April 28, 1999 / Instructor: D. Gokhman

Name:
Please show all work.

1. (10 pts.) Suppose A, B, C are invertible $n \times n$ matrices.

Find an $n \times n$ matrix X such that $A(B+X) C=I$.
2. (20 pts.) Let $A=\left[\begin{array}{rrrr}3 & 4 & 2 & 3 \\ -1 & 0 & -2 & -1 \\ 5 & 4 & 6 & 5\end{array}\right]$ and $B=\left[\begin{array}{rrrr}1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.

It can be checked that A is row equivalent to B.
Find bases for $\operatorname{nul} A$ and $\operatorname{col} A$. Describe and sketch $\operatorname{col} A$.
3. (30 pts.) Determine whether each of the following sets is a subspace of Euclidean space and give reasons for your answer. Sketch each set.
(a) $\left\{\left[\begin{array}{c}s+t \\ t\end{array}\right]: s, t\right.$ in $\left.\mathbf{R}\right\}$
(b) $\left\{\left[\begin{array}{c}s+1 \\ t \\ s+t\end{array}\right]: s, t\right.$ in $\left.\mathbf{R}\right\}$
(c) $\left\{\left[\begin{array}{l}s+1 \\ t-1 \\ s+t\end{array}\right]: s, t\right.$ in $\left.\mathbf{R}\right\}$
4. (20 pts.) Find $[v]_{\mathcal{B}}$, where
(a) $v=\left[\begin{array}{r}4 \\ -2\end{array}\right]$ in \mathbf{R}^{2} and $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -1\end{array}\right]\right\}$.
(b) $v=3-t^{2}$ in P_{2} and $\mathcal{B}=\left\{1+t, 1-t, 1+t^{2}\right\}$.

1	2	3	4	total (80)	\%

