Name: .

Please show all work.

- 1. (10 pts.) Suppose A, B, C are invertible $n \times n$ matrices. Find an $n \times n$ matrix X such that A(B+X)C=I.
- 2. (20 pts.) Let $A = \begin{bmatrix} 3 & 4 & 2 & 3 \\ -1 & 0 & -2 & -1 \\ 5 & 4 & 6 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

It can be checked that A is row equivalent to B.

Find bases for nul A and col A. Describe and sketch col A.

3. (30 pts.) Determine whether each of the following sets is a subspace of Euclidean space and give reasons for your answer. Sketch each set.

(a)
$$\left\{ \begin{bmatrix} s+t \\ t \end{bmatrix} : s,t \text{ in } \mathbf{R} \right\}$$
 (b) $\left\{ \begin{bmatrix} s+1 \\ t \\ s+t \end{bmatrix} : s,t \text{ in } \mathbf{R} \right\}$ (c) $\left\{ \begin{bmatrix} s+1 \\ t-1 \\ s+t \end{bmatrix} : s,t \text{ in } \mathbf{R} \right\}$

4. (20 pts.) Find $[v]_{\mathcal{B}}$, where

(a)
$$v = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$
 in \mathbf{R}^2 and $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$.

(b)
$$v = 3 - t^2$$
 in P_2 and $\mathcal{B} = \{1 + t, 1 - t, 1 + t^2\}.$

1	2	3	4	total (80)	%