Name: \qquad
Please show all work and justify your answers.

1. Let P be the plane in \mathbf{R}^{3} spanned by $u=[1,-1,0]$ and $v=[2,1,1]$. In other words, $P=\{s u+t v: s, t \in \mathbf{R}\}$. In yet other words, P is the unique plane containing u, v and the origin. Find an equation for P in terms of x, y, z. Sketch.
2. Let T be the triangle whose vertices are the above points u, v and the origin. In other words, $T=\{s u+t v: 0 \leq s \leq 1-t, 0 \leq t \leq 1\}$. What is the area of T ? What are the lengths of sides of T ? What are the angles of T ?
3. Parametrize the line L from $w=[-1,0,0]$ to the above plane P that is perpendicular to P. For which value of your parameter does L meet P ? Find the point of intersection of L and P. What is the distance from w to the plane? Sketch.

1	2	3	total (30)

Name: \qquad
Please show all work and justify your answers.
4. Let C be the curve in \mathbf{R}^{3} given parametrically by $r(t)=\left[2 \cos t, \sin t, \frac{1}{2} t\right]$.
(a) Show that C passes through the points $u=\left[\sqrt{2}, \frac{1}{2} \sqrt{2}, \frac{1}{8} \pi\right]$ and $v=[2,0,0]$.
(b) Find a unit vector tangent to C at u. Parametrize the line tangent to C at u.
(c) Express arclength along C between u and v as a Calculus I integral. Sketch.
5. Let $p_{1}=[1,1,2], p_{2}=[2,-1,0]$. Parametrize the straight line segment S from p_{1} to p_{2}. Find the work done by the force field $F=[x y, y,-y z]$ in moving a particle along S.
6. Let $\omega=[2 x+y] d x+[z \cos (y z)+x] d y+y \cos (y z) d z$.
(a) Show ω is a closed form, i.e. $d \omega=0$.
(b) Show ω is exact by finding a scalar potential η such that $d \eta=\omega$. Find all such η.
(c) Find the integral of ω along any path from the origin to $[1,2,3]$.

4	5	6	total (30)

