Name:
Please show all work and justify your answers.

1. Parametrize the circle $x^{2}+y^{2}=a^{2}$ in the plane and find circulation of the vector field $F(x, y)=-y \widehat{\imath}+2 x \widehat{\jmath}$, both directly and using Green's theorem. Same for flux of $G(x, y)=$ $-x \widehat{\imath}+2 y \widehat{\jmath}$ out of the circle.
2. Let $h>0$. Parametrize the cone $x^{2}+y^{2}=z^{2}, 0 \leq z \leq h$. Find its surface area. Sketch.

3 . Find the plane tangent to the cone from the preceding problem at the point $[1,1, \sqrt{2}]$, assuming $h>\sqrt{2}$. Find both unit normal vectors to the cone at that point. Sketch.
4. Let Ω be the triangular part of the plane $2 x+y+z=2$ cut out by the positive octant. Parametrize Ω using x and y as parameters. Use Kelvin-Stokes theorem to find circulation of the vector field $F=x z \widehat{\imath}+x y \widehat{\jmath}+3 x z \widehat{k}$ around the boundary triangle $\partial \Omega$. Sketch.
5. Let $a, h>0$. Parametrize the cylinder $x^{2}+y^{2}=a^{2}, 0 \leq z \leq h$. Sketch. Find flux of the vector field G from problem 1 through the cylinder, oriented outward, both directly and closing up the cylinder and using Gauss-Ostrogradski theorem. Sketch.
6. Find all critical points of $f(x, y)=x^{2}+y^{2}-y+2$ and classify them using the second derivative test.
7. Suppose the density of Ebola virus (in billions per square inch) in a Petri dish with a 3 inch diameter $x^{2}+y^{2} \leq \frac{9}{4}$ is given by f from the preceding problem. At what coordinates is the density lowest? Highest?
8. Find the Hessian matrix of $f(x, y)=e^{x y}$. Find linear and quadratic Taylor approximations to f at $[1,2]$. Compare values of your approximations to the "exact" values at four nearby points $[1 \pm 0.2,2 \pm 0.2]$.

1	2	3	4	5	6	7	8	total (80)

