Name: \qquad
Please show all work and justify your answers. Supply brief narration with your solutions and draw conclusions.

1. Find a parametrization for the line of intersection of the planes $x+2 y+3 z=6$ and $x-y=0$. Sketch.
2. The curves $t \widehat{\imath}+t^{2} \widehat{\jmath}+t^{3} \widehat{k}$ and $\sin (t) \widehat{\imath}+\sin (2 t) \widehat{\jmath}+t \widehat{k}$ intersect at the origin. Find the angle of intersection.
3. Find the limit of $x y^{3} /\left(x^{4}+2 y^{4}\right)$ as $(x, y) \rightarrow(0,0)$ or show that the limit fails to exist.
4. Suppose f is a differentiable function of x and y and $g(u, v)=f\left(e^{u}+\sin v, e^{u}+\cos v\right)$. Use the table of values to find the directional derivative of g at the origin along the main diagonal.

(x, y)	f	g	f_{x}	f_{y}
$(0,0)$	2	3	4	5
$(1,2)$	6	7	8	9

5. Integrate $x /(1+x y)$ over the unit square $[0,1] \times[0,1]$.

1	2	3	4	5	total (50)	$\%$
Prelim. course grade:						$\%$

