Name: \qquad
Please show all work and justify your answers. Supply brief narration with your solutions and draw conclusions.

1. Evaluate the following infinite sums
(a) $\sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{3^{n}}$
(b) $\sum_{n=3}^{\infty} \frac{1}{n^{2}+n}$
2. Determine whether the following series converge
(a) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{1+n^{2}}$
3. Find a power series representation for $\frac{1}{8-x^{3}}$ and determine its interval of convergence.
4. Find an equation for the plane containing the line $2 t \widehat{\imath}+(1+t) \widehat{\jmath}+(1-t) \widehat{k}$ and the point $2 \widehat{\imath}+\widehat{k}$. Sketch.
5. Find a parametric formula for the line tangent to the curve $t \widehat{\imath}+t^{2} \widehat{\jmath}+t^{3} \widehat{k}$ at the point $\widehat{\imath}+\widehat{\jmath}+\widehat{k}$.

Hint: First find t which gives you the point.
6. Consider the surface given by $z=y \cos (x y)$.
(a) Find the differential. In other words, express $d z$ in terms of $d x$ and $d y$.
(b) Find an equation for the plane tangent to the surface at the point $\widehat{\jmath}+\widehat{k}$.
7. Suppose f is a differentiable function of x and y and $g(r, \theta)=f(r \sin \theta, r \cos \theta)$.
(a) Use the table of values below to find the gradient of g at the point $\widehat{\imath}$.
(b) What is the maximum possible value of the directional derivative of g at $\widehat{\imath}$ along the various directions and along which direction is this maximum attained?

(x, y)	f	g	f_{x}	f_{y}
$(0,1)$	2	3	4	5
$(1,0)$	6	7	8	9

8. Integrate $x \cos (x-y)$ over the rectangle $\left[-\frac{\pi}{3}, \frac{\pi}{3}\right] \times\left[0, \frac{\pi}{6}\right]$.

1	2	3	4	5	6	7	8	total (80)

