Name: _

Please show all work and justify your answers. Supply brief narration with your solutions and draw conclusions.

1. Evaluate the following infinite sums

(a)
$$\sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{3^n}$$
 (b) $\sum_{n=3}^{\infty} \frac{1}{n^2 + n^2}$

2. Determine whether the following series converge

(a)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{\sin^2 n}{1+n^2}$

- 3. Find a power series representation for $\frac{1}{8-x^3}$ and determine its interval of convergence.
- 4. Find an equation for the plane containing the line $2t\hat{\imath} + (1+t)\hat{\jmath} + (1-t)\hat{k}$ and the point $2\hat{\imath} + \hat{k}$. Sketch.
- 5. Find a parametric formula for the line tangent to the curve $t \hat{i} + t^2 \hat{j} + t^3 \hat{k}$ at the point $\hat{i} + \hat{j} + \hat{k}$.

Hint: First find t which gives you the point.

- 6. Consider the surface given by $z = y \cos(xy)$.
 - (a) Find the differential. In other words, express dz in terms of dx and dy.
 - (b) Find an equation for the plane tangent to the surface at the point $\hat{j} + \hat{k}$.
- 7. Suppose f is a differentiable function of x and y and $g(r, \theta) = f(r \sin \theta, r \cos \theta)$.
 - (a) Use the table of values below to find the gradient of g at the point \hat{i} .
 - (b) What is the maximum possible value of the directional derivative of g at \hat{i} along the various directions and along which direction is this maximum attained?

8. Integrate $x \cos(x-y)$ over the rectangle $\left[-\frac{\pi}{3}, \frac{\pi}{3}\right] \times \left[0, \frac{\pi}{6}\right]$.

1	2	3	4	5	6	7	8	total (80)