Name: Pseudonym: Please show all work and box the answers. 1. (40 pts.) Let $u = 4\hat{j} - 3\hat{k}$, $v = \hat{i} + 2\hat{j} - 2\hat{k}$, θ = the angle from u to v. Find (a) $\operatorname{comp}_{u} v$, (b) $\operatorname{proj}_{u} v$, (c) $\cos \theta$, (d) w such that $|w| = 1, w \perp u, w \perp v$. 2. (40 pts.) Let u = (5, 1, 5), v = (7, 8, 9), w = (9, 9, 9). Find an equation for (a) the line through the point u in the direction of v, (b) the line through the points u and v, (c) the plane perpendicular to v through the point u, (d) the plane through the points u, v, and w. 3. (20 pts.) Find the shortest distance from the point p = (2, 1, 2) to (a) the line x = 2 + 2t, y = t, z = 1, (b) the plane 3x + y - z = 2. (a) $(x+1)^2 + y^2 + (z-2)^2 = 4$ (b) $x^2 + z^2 = 9, -2 < y < 2$. 4. (20 pts.) Sketch: 5. (40 pts.) Compute all partial derivatives of (a) $f(x, y) = y \sin(xy)$, (b) $f(x, y) = x \cos y + y e^x$, (c) $f(x, y, z) = x \sin(y + 3z)$, (d) $f(x, y) = x^y$. 6. (20 pts.) Find an equation for the plane tangent to $z = x^2 + y^3$ at (3, 2, 17). 7. (30 pts.) True/false questions. Circle your choice. No explanation necessary. Т \mathbf{F} (a) If $u \perp v$, then $u \cdot v = 0$. Т F (b) If u = 2v, then $u \times v = 0$. Т (c) $|u \times v|$ = the area of the triangle formed by u and v. \mathbf{F} Т F (d) The dot product is commutative.

- T F (e) $(u \times v) \times w = u \times (v \times w)$ for all u, v, w.
- T F (f) If $\partial f / \partial x = 0$, then f(x, y) is constant.

1	2	3	4	5	6	7	total (210)	%