Name: \qquad Pseudonym: \qquad
Please show all work and box the answers.

1. (40 pts.) Let $u=4 \widehat{\jmath}-3 \widehat{k}, v=\widehat{\imath}+2 \widehat{\jmath}-2 \widehat{k}, \theta=$ the angle from u to v. Find
(a) $\operatorname{comp}_{u} v$,
(b) $\operatorname{proj}_{u} v$,
(c) $\cos \theta$,
(d) w such that $|w|=1, w \perp u, w \perp v$.
2. (40 pts.) Let $u=(5,1,5), v=(7,8,9), w=(9,9,9)$. Find an equation for
(a) the line through the point u in the direction of v,
(b) the line through the points u and v,
(c) the plane perpendicular to v through the point u,
(d) the plane through the points u, v, and w.
3. (20 pts.) Find the shortest distance from the point $p=(2,1,2)$ to
(a) the line $x=2+2 t, y=t, z=1$,
(b) the plane $3 x+y-z=2$.
4. (20 pts.) Sketch: (a) $(x+1)^{2}+y^{2}+(z-2)^{2}=4 \quad$ (b) $x^{2}+z^{2}=9,-2 \leq y \leq 2$.
5. (40 pts.) Compute all partial derivatives of
(a) $f(x, y)=y \sin (x y)$,
(b) $f(x, y)=x \cos y+y e^{x}$,
(c) $f(x, y, z)=x \sin (y+3 z)$,
(d) $f(x, y)=x^{y}$.
6. (20 pts.) Find an equation for the plane tangent to $z=x^{2}+y^{3}$ at $(3,2,17)$.
7. (30 pts.) True/false questions. Circle your choice. No explanation necessary.

T F (a) If $u \perp v$, then $u \cdot v=0$.
T F (b) If $u=2 v$, then $u \times v=0$.
T $\mathrm{F} \quad$ (c) $|u \times v|=$ the area of the triangle formed by u and v.
T F (d) The dot product is commutative.
T $\quad \mathrm{F} \quad(\mathrm{e})(u \times v) \times w=u \times(v \times w)$ for all u, v, w.
T F (f) If $\partial f / \partial x=0$, then $f(x, y)$ is constant.

1	2	3	4	5	6	7	total (210)	$\%$

