Calculus III, mat 2213-5
 Final, May 10,1994
 Instructor: D. Gokhman

Name:

1. (30 pts.) Let $\vec{u}=\vec{i}+2 \vec{k}, \vec{v}=-2 \vec{i}+\vec{j}, \vec{w}=3 \vec{j}-\vec{k}$. Calculate the following:
(a) $\vec{u} \cdot(\vec{v}+3 \vec{w})$
(b) $\vec{u} \cdot(\vec{v} \times \vec{w})$
(c) $(\vec{u} \times \vec{v}) \cdot \vec{u}$
(d) $|v-w|$
(e) $\operatorname{comp}_{u} v$
(f) $\operatorname{proj}_{u} v$
2. (20 pts.) True/false questions. No explanation required.

T F (a) There is only one vector of length zero.
T F (b) If $\vec{u} \times \vec{v}=0$, then $u=0$ or $v=0$ or u is perpendicular to v.
T F (c) The line $\vec{r}(t)=t(\vec{i}+\vec{j}+\vec{k})$ is perpendicular to the plane $x+y+z=1$.
T F (d) The line $\vec{r}(t)=t \vec{i}$ lies in the plane $y+z=0$.
3. (40 pts.) Let $A=\vec{i}+2 \vec{k}, B=-2 \vec{i}+\vec{j}, C=3 \vec{j}-\vec{k}$
(a) Find a parametric formula for the line through A and B.
(b) Find an equation for the plane through C perpendicular to the line.
(c) Find the distance from A to the plane.
(d) Find the distance from C to the line.
4. (40 pts.) Consider the plane curve $\vec{r}(t)=e^{t^{2}} \vec{i}+t^{5} \vec{j}$.
(a) Find $r^{\prime}(t)$ and $r^{\prime \prime}(t)$.
(b) Find $r(1), r^{\prime}(1)$ and $r^{\prime \prime}(1)$.
(c) Find a parametric formula for the line tangent to $\vec{r}(t)$ at the point $r(1)$.
(d) Find a parametric formula for the line perpendicular to $\vec{r}(t)$ at the point $r(1)$.
5. (30 pts.) Consider the circle of radius 2 centered at $P=\vec{i}+\vec{j}$.
(a) Find a parametric formula for the circle.
(b) Find all x intercepts of the circle.
(c) Pick one of the intercepts and find a parametric formula for the line tangent to the circle at that point.

1	2	3	4	5	6	7	8	total (240)

6. (20 pts.) Compute the limits of the following functions as $(x, y) \rightarrow(0,0)$:
(a) $x^{2}+y^{2}$
(b) $x y$
(c) $\frac{x}{x^{2}+y^{2}}$
(d) $\frac{x y}{x^{2}+y^{2}}$
7. (40 pts.) Let $f(x, y)=x^{3}+y^{3}+5 x y$.
(a) Find all the first and second partial derivatives of f.
(b) Find and classify all critical points of f.
(c) Find the values of f at all critical points.
(d) Sketch the traces by the planes $x=0$ and $x-y=0$.
8. (20 pts.) Let $f(x, y)=x^{2}+y^{2}$.
(a) Find an equation for the plane tangent to the graph of f at the point given by $x=1, y=1$.
(b) Sketch the level curve going through this point.
