Name: ____

- 1. (30 pts.) Let $\vec{u} = 2\vec{i} + \vec{k}$, $\vec{v} = \vec{i} 2\vec{j}$, $\vec{w} = -\vec{j} + 5\vec{k}$. Calculate the following:

 - (a) $\vec{u} \cdot (\vec{v} + 3\vec{w})$ (b) $\vec{u} \cdot (\vec{v} \times \vec{w})$ (c) $(\vec{u} \times \vec{v}) \cdot \vec{u}$

 - (d) |v w| (e) $\operatorname{comp}_{n} w$ (f) $\operatorname{proj}_{n} w$
- 2. (20 pts.) True/false questions. No explanation required.
- T F (a) There are exactly two unit vectors perpendicular to a plane in \mathbb{R}^3 .
- T F (b) If $\vec{u} \times \vec{v} = 0$, then u = 0 or v = 0 or u is perpendicular to v.
- T F (c) The line \vec{r} (t) = $t(-\vec{i} \vec{j} \vec{k})$ is perpendicular to the plane x + y + z = -2.
- T F (d) The line $\vec{r}(t) = t \vec{j}$ lies in the plane x + z = 0.
- 3. (40 pts.) Let $A = 2\vec{i} + \vec{k}$, $B = -\vec{i} + 2\vec{j}$, $C = \vec{j} 3\vec{k}$
 - (a) Find a parametric formula for the line through A and B.
 - (b) Find an equation for the plane through C perpendicular to the line.
 - (c) Find the distance from A to the plane.
 - (d) Find the distance from C to the line.
- 4. (40 pts.) Consider the plane curve $\vec{r}(t) = t^2 \vec{i} e^{t^5} \vec{j}$.
 - (a) Find r'(t) and r''(t).
 - (b) Find r(1), r'(1) and r''(1).
 - (c) Find a parametric formula for the line tangent to \vec{r} (t) at the point r(1).
 - (d) Find a parametric formula for the line perpendicular to \vec{r} (t) at the point r(1).
- 5. (30 pts.) Consider the circle of radius 2 centered at $P = \vec{i} \vec{j}$.
 - (a) Find a parametric formula for the circle.
 - (b) Find all x intercepts of the circle.
 - (c) Pick one of the intercepts and find a parametric formula for the line tangent to the circle at that point.

1	2	3	4	5	6	7	8	total (240)

6. (20 pts.) Compute the limits of the following functions as $(x,y) \to (0,0)$:

(a)
$$x^2 + y^2$$
 (b) x^2y^2 (c) $\frac{xy}{x^2 + y^2}$ (d) $\frac{x^2y}{x^2 + y^2}$

- 7. (40 pts.) Let $f(x,y) = x^3 + y^3 + 2xy$.
 - (a) Find all the first and second partial derivatives of f.
 - (b) Find and classify all critical points of f.
 - (c) Find the values of f at all critical points.
 - (d) Sketch the traces by the planes x = 0 and x y = 0.
- 8. (20 pts.) Let $f(x,y) = x^2 + y^2$.
 - (a) Find an equation for the plane tangent to the graph of f at the point given by $x=1,\,y=-1.$
 - (b) Sketch the level curve going through this point.