Calculus III, MAT 2213.001. Exam, Oct. 18, 1993. Instructor: D. Gokhman
Show all pertinent work, answers alone are not sufficient. Box the answers.

Name: $\qquad$

1. (30 pts.) Find the interval of convergence for the following power series:
(a) $\sum_{n=0}^{\infty} \frac{(n-2)(x-1)^{n}}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{x^{n}}{3^{n} n^{2}}$
2. (30 pts.) Determine whether each of the following sequences or series converges to a real number. If so, find the limit. Otherwise state that the sequence or series diverges.
(a) $\left(\frac{n-1}{n}\right)^{\left(n^{2}\right)}$
(b) $\cos \left(\frac{n \pi}{4}\right)$
(c) $\sum_{n=0}^{\infty}\left(\frac{1}{5^{n}}+\frac{2}{3^{n+1}}\right)$
3. (20 pts.) For each of the following series find the set of all $p$ such that the given series converges.

$$
\begin{array}{ll}
\text { (a) } \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{p}} & \text { (b) } \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}
\end{array}
$$

4. (20 pts.) Find the Taylor polynomial for $\ln x$ of degree $n=2$ centered at $a=1$. Estimate the error of approximating $\ln (9 / 10)$ with the above polynomial.

| 1 | 2 | 3 | 4 | total (100) |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
|  |  |  |  |  |

