Calculus III, mat 2213 Exam $\mathcal{N}^{\mathrm{O}_{2}}$, 4/14/93 Instructor: D. Gokhman Show all pertinent work, answers alone are not sufficient. Box the answers.

Name:

1. (30 pts.) CONIC SECTIONS

For each of the following conic sections, write an equation describing the curve and find the eccentricity.
(a) a circle passing through the point $(2,-4)$ with center $(4,4)$.
(b) a hyperbola with foci $(\pm 2,0)$ and asymptotes $y= \pm 2 x$.
(c) a parabola with vertex $(4,-4)$ and focus $(8,-4)$.
(Hint: find the directrix and then another point on the parabola)
2. (20 pts.) CALCULUS ON CURVES

Suppose the position of a fly on a window is given as a function of time t by $x=\sec t, y=\tan t$. At time t find the velocity components $\frac{d x}{d t}, \frac{d y}{d t}$, the slope $\frac{d y}{d x}$, and the curvature of the path $\frac{d^{2} y}{d x^{2}}$. At time $t=\frac{\pi}{6}$ find an equation for the tangent line.
3. (20 pts.) ROTATION

How are the following equations transformed by a rotation by $\frac{\pi}{4}$?
(a) $y=x+1$
(b) $y=x^{2}$
4. (30 pts.) CURVES IN POLAR COORDINATES
(a) Sketch the curve $r=2 \sin (4 \theta)$. Find the area enclosed by one of the petals.
(b) Find all points of intersection of the curves

$$
r=1 \text { and } r=2 \sin (2 \theta)
$$

(c) Find the length of the curve $r=2 \sin ^{3}\left(\frac{\theta}{3}\right), \theta \in[0,3 \pi]$.

1	2	3	4	total (100)

