Name: $\qquad$
Please show all work.

1. (a) If $P, Q, R$ are propositions, use a truth table to prove that $P \vee(Q \wedge R) \Leftrightarrow(P \vee Q) \wedge(P \vee R)$
(b) If $X, Y, Z$ are sets, prove that $X \cup(Y \cap Z)=(X \cup Y) \cap(X \cup Z)$
2. Using formal language and appropriate quantifiers, translate into symbolic form the following sentences. Determine whether they equivalent and explain why or why not.

- Every integer is even or odd.
- Every integer is even or every integer is odd.

3. For each statement below determine whether it is true. If so, prove it. If not, exhibit a concrete counterexample and explain why it is indeed a counterexample.
(a) If $a, b, c$ are integers such that $a$ divides $b$ and $b$ divides $c$, then $a$ divides $c$.
(b) If $a, b, c$ are integers such that $a$ divides $c$ and $b$ divides $c$, then $a b$ divides $c$.
4. For each statement below determine whether it is true. If so, prove it. If not, exhibit a concrete counterexample and explain why it is indeed a counterexample.
(a) If $S$ and $T$ are sets, $S \cup T=S \Leftrightarrow S=T$
(b) If $S$ and $T$ are sets, $S \cap T=S \Leftrightarrow S \subseteq T$

| 1 | 2 | 3 | 4 | total (40) |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
|  |  |  |  |  |

