Name: \qquad

Please show all work.

1. (a) If P, Q, R are propositions, use a truth table to prove that $P \wedge(Q \vee R) \Leftrightarrow(P \wedge Q) \vee(P \wedge R)$
(b) If X, Y, Z are sets, prove that $X \cap(Y \cup Z)=(X \cap Y) \cup(X \cap Z)$
2. Consider the Diophantine equation $15 x-24 y=9$
(a) Find the general integer solution to the equation.
(b) Find three distinct particular integer solutions to the equation and sketch them in the plane.
3. Find all simultaneous integer solutions to the system of equations

$$
\begin{aligned}
2 x & \equiv 4 \bmod 9 \\
3 x & \equiv 8 \bmod 11
\end{aligned}
$$

4. A sequence $a_{n} \in \mathbf{Z}, n \geq 0$ is defined recursively by $a_{0}=3, a_{1}=10$ and for $a>1$

$$
a_{n}=7 a_{n-1}-12 a_{n-2}
$$

(a) Compute a_{n} for $n \leq 6$
(b) Prove by induction that $a_{n}=2 \cdot 3^{n}+4^{n}$ for all $n \geq 0$
5. Let $p \in \mathbf{Z}[x], p(x)=x^{4}-x^{3}+x-1$. By inspection $p(1)=0$. Use this to find all complex roots of p and sketch them in the complex plane.

1	2	3	4	5	total (50)

