Name:

Please show all work and justify your answers. Make and label sketches. Supply brief narration with your solutions and draw conclusions, including units as appropriate.

1. A conical tank, with vertex at the bottom, height 5 m and top diameter 4 m is full of water. How much work is involved in pumping all the water over the rim? Feel free to integrate numerically.

Note: mass density of water $\delta=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, gravitational acceleration $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
2. Find the second degree Taylor approximation to $e^{x}(1-x)$ near $x=0$. Sketch the given function and the approximation fairly close to $x=0$ on the same graph. On which interval would you say the approximation is "good"?
3. Find the first order Fourier approximation to $f(x)=\frac{1}{2}-|x|$ on the interval $[-1,1]$. Feel free to compute the required integrals numerically. Sketch $f(x)$ and the approximation over the entire interval on the same graph. At what points is the approximation the poorest? Why do you think that is?
4. Suppose $y(x)$ is a solution of the differential equation

$$
\frac{d y}{d x}=(x+1)\left(y^{2}+1\right)
$$

satisfying the initial condition $y(0)=1$. Find $y(0.5)$.

Fourier series: If f is a continuous function on $(-p / 2, p / 2)$, then $f(x)=a_{0}+\sum_{k=1}^{\infty}\left[a_{k} \cos (2 \pi k x / p)+\right.$ $\left.b_{k} \sin (2 \pi k x / p)\right]$, where $a_{0}=\frac{1}{p} \int_{-\frac{p}{2}}^{\frac{p}{2}} f(x) d x, a_{k}=\frac{2}{p} \int_{-\frac{p}{2}}^{\frac{p}{2}} f(x) \cos (2 \pi k x / p) d x, b_{k}=\frac{2}{p} \int_{-\frac{p}{2}}^{\frac{p}{2}} f(x) \sin (2 \pi k x / p) d x$

1	2	3	4	total (40)	$\%$
Prelim course grade:					

