Calculus II / MAT 1223 Quizzes / Fall 1999 / Instructor: D. Gokhman

1. Evaluate:

(a)
$$\int \frac{(z^3+1)^2}{\sqrt{z}} dz$$
 (b) $\int_1^2 (z^2+1)^2 dz$ (c) $\int \frac{\sqrt[3]{\sqrt{t}+1}}{\sqrt{t}} dt$
(d) $\frac{d}{dx} \int_x^0 \sin(t) dt$ (extra credit) $\frac{d}{dx} \int_0^{x^2} \sin(t) dt$

- 2. Sketch the curves $4y^2 2x = 0$ and $4y^2 + 4x 12 = 0$ and find the area between them.
- 3. Find the volumes of solids of revolution generated by rotating the given region with respect to the specified axis. Sketch the region, the "rectangles", and the axis.
 - (a) Region bounded by $y \sqrt[3]{x} = 0$, x = 8, y = 0. Axis: x = 0.
 - (b) Region bounded by $x^2 + y^2 = 1$, x = 0, y = 0 ($x \ge 0$, $y \ge 0$). Axis: y = 0.
- (a) Find the length of the curve given by $y = \left(1 x^{\frac{2}{3}}\right)^{\frac{3}{2}}, 0 \le x \le 1$. 4.
 - (b) Find the surface area generated by rotating the curve $x = 1 t^2$, y = 2t, $0 \le t \le 1$ around the x axis.
- (a) Given a linear spring with Hooke's constant $k = 2 \text{ kg/s}^2$, find the work needed to 5. compress the spring 1 meter from equilibrium.
 - (b) Find the centroid of the region between the curves $y = x^2$ and y = x + 2. Sketch.
- 6. (a) Differentiate $\ln(x)\ln(x^2+1)$.
 - (b) Find y' if $y = x^x$. (Hint: take ln of both sides and differentiate implicitly)
 - (c) Evaluate $\int \frac{x \, dx}{x^2 + 1}$
 - (d) Sketch $y = \ln(1/x)$. (Hint: simplify first)
- 7. (a) Differentiate $e^{x \ln x}$.
 - (b) Evaluate $\int e^{x+e^x} dx$.
 - (c) Let R be the region in the plane bounded by $y = e^{-x^2}$, y = 0, x = 0, and x = 1. Find the volume of the solid formed by rotating R around the y axis. Sketch.

8. (a) Differentiate: (i)
$$\log_5(x^2+1)$$
, (ii) 5^{x^2+1} ,

(b) Evaluate: (i)
$$\int 5^{2x} dx$$
, (ii) $\int \sqrt{x} 2^{x^{3/2}} dx$

- (b) Evaluate: (i) $\int 5^{2x} dx$, (ii) $\int \sqrt{x} 2^{x^{3/2}} dx$, (c) Sketch $y = \tan^{-1} x$ and find $\lim_{x \to \infty} \tan^{-1} x$ and $\lim_{x \to -\infty} \tan^{-1} x$.
- (a) Differentiate: (i) $x \tan^{-1}(x)$, (ii) $\sin^{-1}(2x^2)$, (iii) $\sinh(x) \cosh(2x)$. 9.

(b) Evaluate integrals: (a)
$$\int \tan(x) dx$$
, (b) $\int \frac{e^x}{1 + e^{2x}} dx$.

(c) Sketch $\sinh^{-1} x$ and find $\lim_{x \to \infty} \sinh^{-1} x$.

10. Evaluate integrals: (a)
$$\int \frac{\sin x - \cos x}{\sin x} dx$$
, (b) $\int x\sqrt{x-1} dx$, (c) $\int \frac{dx}{\sqrt{4x-x^2}}$