Calculus II / MAT 1223

Final / December 15, 1999 / Instructor: D. Gokhman

Name: \qquad Pseudonym: \qquad
Please show all work and box the answers, where appropriate.

1. (10 pts.) Differentiate the following functions:
(a) $\cosh \left(\ln \left(x^{2}+1\right)\right)$
(b) $\arctan \left(e^{x}\right)$
(c) $\log _{2}\left(x^{3}+1\right)$
(d) $2^{x^{3}+1}$
(e) $x^{\sin x}$
2. (10 pts .) Evaluate the following expressions:
(a) $\int 2^{2 x} d x$
(b) $\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$
(c) $\int \frac{d t}{t\left((\ln t)^{2}+1\right)} d t$
(d) $\int \cos ^{3}(x) d x$
(e) $\frac{d}{d x} \int_{0}^{e^{x}}(\arctan t)^{2} d t$
3. (10 pts.) Evaluate the following integrals:
(a) $\int x(2 x+1)^{1 / 3} d x$
(b) $\int \frac{d x}{\sqrt{16+6 x-x^{2}}}$
4. (10 pts.) Sketch the following functions:
(a) $y=2^{x}$
(b) $y=\left(\frac{1}{2}\right)^{x}$
5. (10 pts.) Evaluate the following limits:
(a) $\lim _{x \rightarrow 0} \ln (\arcsin x+1)$
(b) $\lim _{x \rightarrow 0^{+}} \ln (\arcsin x)$
6. (10 pts .) Let R be the region in the plane bounded by the x axis and $y=\sin (x)$, $0 \leq x \leq \pi$. Find the volume of the solid formed by rotating R around the x axis. Sketch.
7. (10 pts.) Find the length of the curve given by $y=x^{\frac{3}{2}}, 0 \leq x \leq 1$.
8. (10 pts .) Find the surface area generated by rotating the curve $x=\cos t, y=\sin t$, $0 \leq t \leq \pi$ around the x axis.
9. (10 pts.) Find the centroid of the region between the curves $y=x^{2}$ and $y=2-x$. Sketch.

1	2	3	4	5	6	7	8	9	total (90)	$\%$

