Name: ______ Pseudonym: _____

Please show all work and box the answers, where appropriate.

- 1. (10 pts.) Differentiate the following functions:
 - (a) $\cosh(\ln(x^2+1))$ (b) $\arctan(e^x)$ (c) $\log_2(x^3+1)$ (d) 2^{x^3+1} (e) $x^{\sin x}$
- 2. (10 pts.) Evaluate the following expressions:

(a)
$$\int 2^{2x} dx$$
 (b) $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$ (c) $\int \frac{dt}{t((\ln t)^2 + 1)} dt$

(d)
$$\int \cos^3(x) dx$$
 (e) $\frac{d}{dx} \int_0^{e^x} (\arctan t)^2 dt$

3. (10 pts.) Evaluate the following integrals:

(a)
$$\int x(2x+1)^{1/3} dx$$
 (b) $\int \frac{dx}{\sqrt{16+6x-x^2}}$

4. (10 pts.) Sketch the following functions:

(a)
$$y = 2^x$$
 (b) $y = \left(\frac{1}{2}\right)^x$

5. (10 pts.) Evaluate the following limits:

(a)
$$\lim_{x\to 0} \ln(\arcsin x + 1)$$
 (b) $\lim_{x\to 0^+} \ln(\arcsin x)$

- 6. (10 pts.) Let R be the region in the plane bounded by the x axis and $y = \sin(x)$, $0 \le x \le \pi$. Find the volume of the solid formed by rotating R around the x axis. Sketch.
- 7. (10 pts.) Find the length of the curve given by $y = x^{\frac{3}{2}}$, $0 \le x \le 1$.
- 8. (10 pts.) Find the surface area generated by rotating the curve $x = \cos t$, $y = \sin t$, $0 \le t \le \pi$ around the x axis.
- 9. (10 pts.) Find the centroid of the region between the curves $y=x^2$ and y=2-x. Sketch.

I	1	2	3	4	5	6	7	8	9	total (90)	%