Midterm 1 / 2015.10.1 / Calculus I / MAT 1214.015

Name: \qquad

Please show all work and justify your statements. Make and label sketches, draw conclusions (using complete sentences and including units), and box the final answers as appropriate.

1. Evaluate $\lim _{x \rightarrow 0} f(x)$. Find a that makes f continuous or explain why no a works.
(a) $f(x)= \begin{cases}\frac{|x|}{x} & \text { for } x \neq 0 \\ a & \text { for } x=0\end{cases}$
(b) $f(x)= \begin{cases}\frac{\sin x}{x} & \text { for } x \neq 0 \\ a & \text { for } x=0\end{cases}$
(c) $f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & \text { for } x \neq 0 \\ a & \text { for } x=0\end{cases}$
(d) $f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & \text { for } x \neq 0 \\ a & \text { for } x=0\end{cases}$
2. Use the definition of the derivative to find the equation of the line tangent to the graph of $y=x^{-1}$ at the point $\left[2, \frac{1}{2}\right]$. Sketch.
3. Find derivatives of the following functions with respect to x.
(a) $\sqrt{x} \ln x$
(b) $\frac{x}{1+x^{2}}$
(c) $\cos \left(e^{x}\right)$
(d) $\sin \left(x^{e}\right)$
4. Suppose f is a differentiable function. Apply the rules of differentiation to the functions $f\left(x^{2}\right)$ and $x^{2} f(x)$ and explain why both their slopes at $x=0$ must be 0 .
5. Find two lines through the point $[-3,8]$ that are tangent to the graph of $y=x^{2}$.

1	2	3	4	5	total (50)

