Name: _

Please show all work and justify your answers.

- 1. (10 pts.) Suppose $f(x) = \begin{cases} x & \text{for } x < 1\\ 2-x & \text{for } x > 1\\ 0 & \text{for } x = 1 \end{cases}$. (a) What is $\lim_{x \to 1} f(x)$? (b) Explain why this limit exists.
- 2. (10 pts.) Evaluate $\lim_{x \to 0} \frac{x \tan(2x)}{\sin^2(3x)}$.
- 3. (10 pts.) Assuming a yearly inflation rate of 17% the price of a liter of milk is given by $P(t) = 0.5 \cdot 1.17^t$ where t is in years. How fast will the price of milk be rising in 15 years?
- 4. (10 pts.) Let $f(x) = x^{\frac{1}{3}}$.
 - (a) Use the definition of derivative to find f' and show that it satisfies the power rule. Hint: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$.
 - (b) Find an equation for the tangent line to f at x = 64 and use it to approximate $62^{\frac{1}{3}}$.
- 5. (10 pts.) Find dy/dx, if $x \cos(y) + y^2 = \ln(x y) + 1$.
- 6. (10 pts.) HMS Rustbucket breaks up and starts dumping its cargo of crude oil at the rate of 80 liters per minute, forming a circular oil slick 0.2 mm thick. When the oil slick is 4 km in diameter how fast is the diameter increasing?
- 7. (10 pts.) An artillery position on a hill 120 meters above the plain fires a missile. The horizontal distance of the missile from the firing point and its height above the plain are given (in meters) as functions of time (in seconds) by x(t) = 80t, $y(t) = 120 + 10t - qt^2/2$, where $q = 9.81 \text{ m/sec}^2$.
 - (a) When does the missile's trajectory reach its highest point?
 - (b) When does the missile hit the plain?
 - (c) What is the speed of the missile when it hits the plain?
- 8. (10 pts.) Sue wants to build a 2 m^2 flower bed in the shape of a pizza slice (sector) by placing bricks along the border. What angle and radius should she choose in order to minimize the cost of bricks?
- 9. (10 pts.) Evaluate the following integrals

(a)
$$\int_{1}^{4} \left[\sqrt{t} + t^{3}\right]^{2} dt$$
 (b) $\int_{0}^{\frac{\pi}{8}} \cos(4t) dt$ (c) $\int \frac{1+t^{2}}{t^{3}} dt$ (d) $\int 2^{3t} dt$

10. (10 pts.) Cholesterol starts depositing on arterial walls at a rate proportional to the cube root of time. After 2 years, the deposit is 0.5 mm thick. How thick is the deposit 15 years after it started forming?

1	2	3	4	5	6	7	8	9	10	total (100)	(%)