Midterm 2 / April 27, 2000 Instructor. D. Gokhman

Name: \qquad
Please show all work and box the answers, where appropriate.

1. (10 pts.)
(a) Let $f(x)=x^{4} \cos ^{2}\left(x^{3}+1\right)$. Find the differential $d f$.
(b) Suppose $x^{2} y\left(x+y^{2}\right)=2$. Find $d y / d x$.
2. (10 pts.) Consider $f(x)=\sin x$ on the interval $[\pi, 4 \pi]$.
(a) Find all critical points of f in the given interval and classify them using the second derivative test.
(b) Find the global maximum (resp. minimum) of f on the given interval and find all x where it is attained. Sketch the graph of $y=f(x)$ on the above interval.
3. (10 pts.) Sketch $y=f(x)$ on the interval $[-1,3]$ and determine whether the Mean Value Theorem applies. If so, find all points in the interval satisfying the conclusion of the theorem. Otherwise explain why the theorem fails to apply.
(a) $f(x)=x^{2}$
(b) $f(x)=|x|$
4. (10 pts.) Consider $f(x)=x^{2}+1$ on the interval $[-1,1]$. Compute the upper and lower Riemann sums with $n=3$. For each sum, sketch the corresponding rectangles on the graph of $y=f(x)$. Compare your results to the exact area under the graph of $y=f(x)$.
5. (10 pts.) Evaluate
(a) $\frac{d}{d x} \int_{\sin (x)}^{2} \sqrt{1-t^{2}} d t$
(b) $\int_{\pi / 2}^{\pi} \sin (x) \cos ^{2}(x) d x$

1	2	3	4	5	total (50)	$\%$

