Midterm 1 / Mar. 2, 2000 / Instructor: D. Gokhman

Name: \qquad
Please show all work and box the answers, where appropriate.

1. (20 pts.) Evaluate each of the following limits (∞ and $-\infty$ are legitimate answers) or state that the limit does not exist.
(a) $\lim _{x \rightarrow-2} \frac{x^{2}-4}{x^{3}+8}$
(b) $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x^{2}}$
(c) $\lim _{x \rightarrow 0} \frac{\tan \left(\frac{x}{2}\right)}{\sin (2 x)}$
(d) $\lim _{x \rightarrow 0} \frac{\tan \left(x^{3}\right)}{\sin \left(x^{2}\right)}$
2. (20 pts.) Let $f(x)=\frac{x^{3}+1}{x^{2}-1}$.
(a) Find all vertical asymptotes or state that there are not any.
(b) Find all oblique and horizontal asymptotes or state that there are not any.
(c) Sketch the graph of $y=f(x)$.
(d) Determine exactly at which x this function fails to be continuous.
3. (20 pts.) Let $f(x)=1 / x$.
(a) Show that f is differentiable by computing $f^{\prime}(x)$ from the definition of the derivative.
(b) Check your answer by computing $f^{\prime}(x)$ using the rules of differentiation.
(c) Find an equation for the line tangent to $y=f(x)$ at $x=2$.
(d) Sketch both $y=f(x)$ and the tangent line.
4. (20 pts.) Find the derivatives of the following functions with respect to x.
(a) $\sqrt{x^{3}+1}$
(b) $\tan ^{3}\left(x^{4}+1\right)$
(c) $\frac{3 x+1}{x^{2}+4}$
(d) $\left(x^{2}-1\right)^{4}(3 x-1)^{5}$

1	2	3	4	total (80)	$\%$

