Name: ____

Please show all work and box the answers, where appropriate.

1. (20 pts.) Evaluate each of the following limits (∞ and $-\infty$ are legitimate answers) or state that the limit does not exist.

(a)
$$\lim_{x \to -2} \frac{x^2 - 4}{x^3 + 8}$$
 (b) $\lim_{x \to 0^-} \frac{|x|}{x^2}$ (c) $\lim_{x \to 0} \frac{\tan\left(\frac{x}{2}\right)}{\sin\left(2x\right)}$ (d) $\lim_{x \to 0} \frac{\tan(x^3)}{\sin\left(x^2\right)}$

2. (20 pts.) Let
$$f(x) = \frac{x^3 + 1}{x^2 - 1}$$
.

- (a) Find all vertical asymptotes or state that there are not any.
- (b) Find all oblique and horizontal asymptotes or state that there are not any.
- (c) Sketch the graph of y = f(x).
- (d) Determine exactly at which x this function fails to be continuous.
- 3. (20 pts.) Let f(x) = 1/x.
 - (a) Show that f is differentiable by computing f'(x) from the definition of the derivative.
 - (b) Check your answer by computing f'(x) using the rules of differentiation.
 - (c) Find an equation for the line tangent to y = f(x) at x = 2.
 - (d) Sketch both y = f(x) and the tangent line.
- 4. (20 pts.) Find the derivatives of the following functions with respect to x.

(a)
$$\sqrt{x^3 + 1}$$
 (b) $\tan^3(x^4 + 1)$ (c) $\frac{3x + 1}{x^2 + 4}$ (d) $(x^2 - 1)^4(3x - 1)^5$

1	2	3	4	total (80)	%