## Calculus I/ MAT1214.901

Final exam / May 9, 2000 Instructor: D. Gokhman

Name: $\qquad$ Pseudonym: $\qquad$
Please show all work and box the answers, where appropriate.

1. ( 20 pts.) Evaluate each of the following limits ( $\infty$ and $-\infty$ are legitimate answers) or state that the limit does not exist and explain.
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}-4}{x^{3}+8}$
(b) $\lim _{x \rightarrow 0} \frac{x^{5}}{|x|^{3}}$
(c) $\lim _{x \rightarrow 0} \frac{\tan (3 x)}{\sin (2 x)}$
(d) $\lim _{x \rightarrow 0} \frac{\sin \left(3 x^{2}\right)}{\tan \left(2 x^{3}\right)}$
2. ( 30 pts .) Let $f(x)=2 / x^{2}$.
(a) Find all asymptotes of each type or state that there are not any of the given type.
(b) Find all $x$, where $f$ fails to be continuous.
(c) Show that $f$ is differentiable at $x=-1$ by computing $f^{\prime}(-1)$ from its definition and check your answer by computing $f^{\prime}(-1)$ using the rules of differentiation.
(d) Find an equation for the line tangent to the graph of $y=f(x)$ at $x=-1$.
(e) Sketch the graph of $y=f(x)$ and of the tangent line.
3. (20 pts.) Find the derivatives of the following functions with respect to $x$.
4. (20 pts.)
(a) $x^{2} \tan ^{4}\left(x^{3}+1\right)$
(b) $\frac{2 x+1}{x^{2}+3}$
(a) Let $f(x)=\sqrt{2 x+1}$. Find the differential $d f$.
(b) Suppose $x^{2} y^{3} \sin \left(x^{2} y^{3}\right)=1$. Find $d y / d x$.
5. (20 pts.) Consider $f(x)=2 \sin x-x$ on the interval $[-\pi, \pi]$.
(a) Find all critical points of $f$ in the given interval and classify them using the second derivative test.
(b) Find the global maximum and global minimum of $f$ on the given interval and find all $x$ where they are attained. Sketch the graph of $y=f(x)$ on the above interval.
6. ( 20 pts.) Sketch $y=f(x)$ on the interval $[-1,1]$ and determine whether the hypotheses of the Mean Value Theorem are satisfied and explain. If possible, find all points in the interval satisfying the conclusion of the theorem.
(a) $f(x)=|x|^{3}$
(b) $f(x)=\sqrt{|x|}$
7. (20 pts.) Consider $f(x)=3-|x|$ on the interval $[-2,2]$. Compute the upper and lower Riemann sums with $n=3$. For each sum, sketch the corresponding rectangles on the graph of $y=f(x)$. Compare your results to the exact area under the graph of $y=f(x)$.
8. (20 pts.) Evaluate

$$
\begin{array}{ll}
\text { (a) } \frac{d}{d x} \int_{1}^{\tan (2 x)} \sqrt{1+t^{2}} d t \quad \text { (b) } \int_{\pi}^{3 \pi / 2} \sin (x) \cos ^{3}(x) d x
\end{array}
$$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | total (170) | $\%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |

