CalculusI/ MAT1214.901

Final/ May 6, 1998 / Instructor: D. Gokhman

Name:

\qquad Pseudonym:

Please show all work and box the answers.

1. (30 pts.) Evaluate each limit or state that it does not exist, and briefly explain why.
(a) $\lim _{x \rightarrow 0} \frac{x^{2}}{|x|}$
(b) $\lim _{x \rightarrow 1} \frac{\cos (x-1)}{x^{3}-1}$
(c) $\lim _{x \rightarrow 0} \frac{x}{\sin (2 x)}$
2. (20 pts.) Without using the rules of differentiation, find $f^{\prime}(x)$, where

$$
\begin{array}{ll}
\text { (a) } f(x)=x^{3} & \text { (b) } f(x)=\frac{1}{x}
\end{array}
$$

3. (30 pts.) Find the derivatives of the following functions:
(a) $f(x)=x^{3}+3 x^{2}-x-1$
(b) $f(x)=x \sin x$
(c) $f(x)=\cos ^{2} x^{3}$
4. (20 pts.) Find the equation of the tangent line to the graph of $y=\sqrt{(2 x)}$ at $x=2$. Sketch.
5. (20 pts.) Let $f(x)= \begin{cases}2 & \text { for } x \leq-1 \\ m x+b & \text { for }-1<x<1 \\ -2 & \text { for } x \geq 1\end{cases}$

For which values of m and b is $f(x)$ continuous? Sketch.
Is $f(x)$ differentiable? Explain.
6. (40 pts.) Let $f(x)=2 x^{2}-x^{4}$.
(a) Find all critical points of f and state whether each is a local minimum, local maximum or neither.
(b) Sketch the graph of $y=f(x)$.
(c) Find the intervals where f is increasing, decreasing, concave up, concave down.
(d) Find the minimum and maximum values of f on the interval $[-2,2]$.
7. (20 pts.) Solve for $y(x)$ the differential equation $\frac{d y}{d x}=\frac{1}{y^{2}}$, subject to the following initial conditions:
(a) $y(0)=1$,
(b) $y(0)=-1$.
8. (20 pts.) Evaluate the following definite integrals:

$$
\begin{array}{ll}
\text { (a) } \int_{-1}^{1}\left(x^{4}-1\right) d x & \text { (b) } \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos (x) d x
\end{array}
$$

1	2	3	4	5	6	7	8	total (200)	$\%$

