Calculus I, MAT 1214 (1) Final, May 7, 1996 Instructor: D. Gokhman

Name: _____

Pseudonym: _____

Show work. Answers alone are not sufficient. Box your answers.

- 1. (40 pts.) For each of the following curves find an equation for the line tangent to the curve at the given point.
 - (a) $(x^3 + y^3)^2 = 4xy$, (1, 1). (b) $\cos(xy) = 1 x y$, (0,

(b)
$$\cos(xy) = 1 - x - y$$
, $(0, 0)$.

- 2. (40 pts.) For each of the following functions f
 - (i) find all critical points of f in the given interval,
 - (ii) classify these critical points,
 - (iii) determine the intervals on which f is increasing or decreasing,
 - (iv) determine whether the global maximum and global minimum of f exist and, if so, find their values.
 - (v) sketch y = f(x).

(a)
$$f(x) = \frac{x^2 - 2x + 2}{x - 1}$$
, $(-\infty, 1)$
(b) $f(x) = x^{\frac{2}{3}}$, $(-\infty, \infty)$

3. (60 pts.) Find the following antiderivatives

(a)
$$\int \frac{dx}{\sqrt[5]{x^2}}$$
 (b) $\int x^3 \sqrt{5x^4 - 1} \, dx$ (c) $\int \cos^4(3x) \sin(3x) \, dx$

4. (60 pts.) Evaluate the following integrals

(a)
$$\int_{-3}^{1} 3x^2 dx$$
 (b) $\int_{-2}^{2} 2|x-1| dx$ (c) $\int_{0}^{2} 3|x^2-1| dx$

(CONTINUED ON REVERSE)

1	2	3	4	5	6	(300)	%

- 5. (40 pts.) Construct the following approximations to the integral in (4a):
 - (a) The left endpoint Riemann sum L with n = 2.
 - (b) The right endpoint Riemann sum R with n = 2.
 - (c) The midpoint Riemann sum M with n = 2.
 - (d) The Simpson approximation $S = \frac{4M + L + R}{6}$.
- 6. (60 pts.) True/false questions. Circle your choice. Justification not required.
- (a) If f(x) is continuous on (0, 1) then it has a maximum on (0, 1). T F

T F (b) If
$$\int_{-\infty}^{\infty} f(t) dt = \int_{-\infty}^{\infty} g(t) dt$$
 for all x, then $f(x) = g(x)$

- ΤF
- (c) If f'(x) = g'(x) for all x, then f(x) = g(x). (d) If f is differentiable, f'(0) = 0, f'(x) < 0 for x > 0, and f'(x) > 0 for x < 0, ΤF then f has a maximum at 0.
- (e) If f is differentiable, f(-1) = 1 and f(1) = 1, then f has a critical point. T F
- T F (f) If $-2 \le f(x) \le 2$ for all x, then $-6 \le \int_0^3 f(x) \, dx \le 6$.

HAVE A NICE SUMMER!