C alculus I, MAT1214 (2-5)

Final, May 11,1995
Instructor: D. Gokhman
Name:
Show your reasoning, answers alone are not sufficient. Calculators or similar devices not permitted.

1. (40 pts .) Find the following limits:
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
(b) $\lim _{x \rightarrow 0^{-}} \frac{x+2|x|}{x-2|x|}$
(c) $\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x}$
(d) $\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{1}{x^{5}}\right)$
2. (40 pts.) Differentiate each of the following functions:
(a) 5
(b) $\frac{2 x^{3}}{x^{4}+1}$
(c) $x^{5} \cos ^{5}\left(x^{5}\right)$
(d) $\sqrt[3]{\sin ^{5} x-2}$
3. (20 pts.) Use the linear approximation to \sqrt{x} at a suitable point a to approximate $\sqrt{10}$.
4. (20 pts.) Find the minimum and maximum values of $f(x)=\frac{1}{x^{2}+1}$ on the interval $[-1,1]$.
5. (30 pts.) True/false questions. Circle your answer, no justification necessary.

T F (a) If $f^{\prime}(x)=g^{\prime}(x)$ for all x, then $f(x)=g(x)$.
T F (b) If $f^{\prime}(x)$ exists for all real x and $f(0)$ is the maximum of $f(x)$, then $f^{\prime}(0)=0$.
T F (c) If $f^{\prime}(x)$ exists for all real $x, f(0)=1$, and $f(1)=-1$, then $f^{\prime}(a)=-2$ for some a.
T F (d) If $f(x)$ is continuous at all x, then $f(x)$ has a maximum.
T F (e) If $g_{1}(x) \leq f(x) \leq g_{2}(x)$ for all x and g_{1}, g_{2} have limits at $x=0$, then so does f.
T F (f) If $f(x) \geq-5$ for all x, then $\int_{0}^{2} f(x) d x \geq-10$.
6. (40 pts .) Find all antiderivatives for each of the following functions:
(a) 0
(b) 5
(c) $x^{2} \sin \left(5 x^{3}\right)$
(d) $\frac{x}{\sqrt{x^{2}+1}}$
7. (30 pts.) Sketch the region bounded by the graph of $y=\left|x^{3}\right|-1$ and the x axis. Find the area of this region.
8. (40 pts.) Let $f(x)=\frac{x^{2}+1}{x+1}$.
(a) Find $f^{\prime}(x)$,
(b) Find $f^{\prime \prime}(x)$,
(c) Find all critical points,
(d) Classify the critical points as local minima, local maxima or neither,
(e) Specify where the graph is increasing/decreasing,
(f) Specify where the graph is concave up/down,
(g) Find equations of all asymptotes,
(h) Sketch the graph of $y=f(x)$.

1	2	3	4	5	6	7	8	total (260)

