Name:

Please show all work. Supply brief narration with your solutions and draw conclusions.

1. A population of four million bacteria is introduced into petri dish and grows exponentially, doubling in size every seven hours. Write down the size of the culture as a function of time. When will the colony reach fifty million?
2. The level of a hormone varies according to $s(t)=3+2 \sin (0.5 t)$ where time t is measured in months. Find and illustrate on a graph
(a) Initial size and the size after a month.
(b) The instantaneous rates of change at those two times.
(c) The average rate of change during that period of time.
3. Find the derivatives of

$$
\begin{array}{ll}
\text { (a) } 2^{2^{t}} & \text { (b) } 2^{t^{2}}
\end{array}
$$

4. Find the second derivative of $f(t)=t e^{-t}$ and use it to describe the curvature of the graph of f for $t \geq 0$.
5. A population x_{t} has per capita production $0.5 x_{t}$. Write down the discrete dynamical system for x_{t}. Find equilibria and use the slope criterion to determine their stability. Describe in words what happens in the long run.
Hint: $x_{t+1}=f\left(x_{t}\right)$, where the updating function f is the per capita production times the size.

1	2	3	4	5	total (50)	$\%$
Prelim. course grade:						$\%$

