Name: \qquad
Please show all work. Supply brief narration with your solutions and draw conclusions.

1. Carbon-14 is a radioactive isotope of carbon (used for dating organic remains) with a half-life of 5,730 years. If you start with a sample of 50 mg of carbon- 14 now, when will the amount decrease to 48 mg ?
2. Find the derivatives of

$$
\text { (a) } 2^{3 t} \cos \left(t^{4}\right) \quad \text { (b) } \sqrt{1+\frac{\ln (2 t)}{t^{3}}}
$$

3. Find the second derivative of $f(t)=\frac{2 t}{3+t}$ and use it to describe the curvature of the graph of f for $t \geq 0$.
4. A population x_{t} has per capita production $0.7 x_{t}$. Write down the discrete dynamical system for x_{t}. Find equilibria and use the slope criterion to determine their stability. Describe in words what happens in the long run.
5. Find all critical points of $f(x)=3 x-x^{4}$ in the interval $0 \leq x \leq 2$. Use $f^{\prime \prime}$ to determine whether they are local minima or maxima. Find the global minimum and maximum of f of the interval and state where they occur. Sketch.
6. Find antiderivatives of the following functions

$$
\begin{array}{ll}
\text { (a) } \frac{\sin (-3 x)}{[1+\cos (-3 x)]^{2}} & \text { (b) }\left(t^{2}+t+1\right) e^{3 t}
\end{array}
$$

7. Find the area enclosed by graphs of \sqrt{x} and x^{2} for $0 \leq x \leq 4$.
8. Determine whether the improper integral $\int_{0}^{1} \frac{d x}{x^{\frac{3}{4}}+x^{\frac{5}{4}}}$ converges or diverges. Justify your assertion by comparison to an integral whose convergence or divergence can be determined directly.
9. The concentration of a medication $h(t)$ as a function of time (in hours) is metabolized at a rate proportional to the cube of the concentration: $d h / d t=-2 h^{3}$. If the initial concentration is $5 \mathrm{mg} / \mathrm{cc}$, find the concentration as a function of time, sketch its graph, and describe its long-term behavior. When will the concentration drop below $1 \mathrm{mg} / \mathrm{cc}$?

1	2	3	4	5	6	7	8	9	total (90)

