Name: .

Please show all work. Supply brief narration with your solutions and draw conclusions.

- 1. Carbon-14 is a radioactive isotope of carbon (used for dating organic remains) with a half-life of 5,730 years. If you start with a sample of 50 mg of carbon-14 now, when will the amount decrease to 48 mg?
- 2. Find the derivatives of

(a)
$$2^{3t}\cos(t^4)$$
 (b) $\sqrt{1 + \frac{\ln(2t)}{t^3}}$

- 3. Find the second derivative of $f(t) = \frac{2t}{3+t}$ and use it to describe the curvature of the graph of f for $t \ge 0$.
- 4. A population x_t has *per capita* production $0.7x_t$. Write down the discrete dynamical system for x_t . Find equilibria and use the slope criterion to determine their stability. Describe in words what happens in the long run.
- 5. Find all critical points of $f(x) = 3x x^4$ in the interval $0 \le x \le 2$. Use f'' to determine whether they are local minima or maxima. Find the global minimum and maximum of f of the interval and state where they occur. Sketch.
- 6. Find antiderivatives of the following functions

(a)
$$\frac{\sin(-3x)}{[1+\cos(-3x)]^2}$$
 (b) $(t^2+t+1)e^{3t}$

- 7. Find the area enclosed by graphs of \sqrt{x} and x^2 for $0 \le x \le 4$.
- 8. Determine whether the improper integral $\int_0^1 \frac{dx}{x^{\frac{3}{4}} + x^{\frac{5}{4}}}$ converges or diverges. Justify your assertion by comparison to an integral whose convergence or divergence can be determined directly.
- 9. The concentration of a medication h(t) as a function of time (in hours) is metabolized at a rate proportional to the cube of the concentration: $dh/dt = -2h^3$. If the initial concentration is 5 mg/cc, find the concentration as a function of time, sketch its graph, and describe its long-term behavior. When will the concentration drop below 1 mg/cc?

1	2	3	4	5	6	7	8	9	total (90)

THE UNIVERSITY OF TEXAS AT SAN ANTONIO