## Name:

Please show all work. Supply brief narration with your solutions and draw conclusions.

1. A population of three million bacteria is introduced into petri dish and grows exponentially, doubling in size every five hours. Write down the size of the culture as a function of time. When will the colony reach eighty million?
2. The size of tumor under treatment varies according to $s(t)=5+2 \cos (0.1 t)$ where time $t$ is measured in days. Find and illustrate on a graph
(a) Initial size and the size after a week.
(b) The instantaneous rates of change at those two times.
(c) The average rate of change during that period of time.
3. Find the derivatives of
(a) $2^{\sin \left(t^{3}\right)}$
(b) $\ln (t) / t$
4. Find the second derivative of $f(t)=t /(1+t)$ and use it to describe the curvature of the graph of $f$ for $t \geq 0$.
5. A population $x_{t}$ has per capita production $x_{t} /\left(1+x_{t}^{2}\right)$. Write down the discrete dynamical system for $x_{t}$. Find equilibria and use the slope criterion to determine their stability.

Hint: $x_{t+1}=f\left(x_{t}\right)$, where the updating function $f$ is the per capita production times the size.

| 1 | 2 | 3 | 4 | 5 | total (50) | $\%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
| Prelim. course grade: |  |  |  |  |  | $\%$ |

