Name: \qquad
Please show all work. Supply brief narration with your solutions and draw conclusions.

1. Find antiderivatives for the following functions
(a) $\frac{t}{t^{2}+1}$
(b) $\frac{\ln t}{t}$
(c) $(t+1) \cos (3 t)$
2. Let t be the number of seconds it takes for a belieber to cry after Justin takes the stage. Suppose the probability density of the onset of tears of joy is linear on the interval $0 \leq t \leq 50$ given by $p(t)=c(1-0.02 t)$, where c is a positive constant. Assume $p(t)=0$ for t outside the interval.
(a) Sketch $p(t)$ on the interval $-10 \leq t \leq 60$. What must be the value of c ?
(b) What is the chance a random pair of eyes in the audience will stay dry for 30 seconds?
(c) On average how long does it take for a fan to start crying?
(d) At what time are half the fans at the show in tears?
3. Emotionally exhausted Justin is put on diazepam administered continuously at the rate of 6 milligrams per day. Diazepam is eliminated at the rate of 35% per day.
(a) Write down a differential equation satisfied by the level $y(t)$ of diazepam on day t.
(b) Find equilibria, if any.
(c) Sketch a slope field and determine stability of equilibria.
(d) Find a solution with initial condition $y(0)=0$ and sketch it on the same graph.
4. Suppose y satisfies the differential equation $\frac{d y}{d t}=\frac{y}{t+1}$
(a) Solve the equation with initial condition $y(0)=5$.
(b) Sketch the solution and describe in words its long-term behavior.

1	2	3	4	total (40)

