Name:

Please show all work. Supply brief narration with your solutions and draw conclusions.

1. A researcher starts a bacterial culture in a petri dish. Three days later the colony is 5 million strong. The day after that it reaches 7 million. Assuming the growth is exponential, what will the size be on the fifth day?
2. The level of medication for a while varies according to $s(t)=15+t^{2}-t$ where time t is measured in days. Compute the derivative of s with the respect to t using the definition of derivative. Find and illustrate on a graph
(a) Initial level and after 3 days.
(b) The instantaneous rates of change at those two times.
(c) The average rate of change during that period of time.
(d) The equation of the tangent line at $t=3$.
3. A population of wasps x_{t} satisfies the recursion $x_{t+1}=5 \sqrt{x_{t}}$. Find fixed points of the recursion (equilibria) and do some cobwebbing on a graph or numerical experimentation to determine their stability (attracting vs. repelling). Describe what happens to the population in the long run, if $x_{0}=0$. Same, if $x_{0}=1$.
4. Find y^{\prime} where
(a) $y=x^{4} \ln x$
(b) $y=\frac{x^{3}}{\sin (2 x)}$
(c) $y=x^{e^{x}}$
(d) $\sin (2 x)+\exp (3 y)=y^{2}$
5. The windpipe contracts during a cough from the rest radius R to radius $r \leq R$. The speed of the exiting is $v=a(R-r) r^{2}$, where a is a positive constant. What value of r maximizes speed?
6. Evaluate the following limits. Justify your answers. If you use l'Hôpital's rule, be sure to specify which case.
(a) $\lim _{x \rightarrow \infty} \frac{x}{3 x+1}$
(b) $\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{x}\right)$
(c) $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{5 x}$
(d) $\lim _{x \rightarrow 0^{+}} x^{4} \ln x$
7. Find antiderivatives for the following functions.
(a) $\sin (3 x)$
(b) $x \sin \left(3 x^{2}\right)$
(c) $x^{2} \sin (3 x)$
(d) $\ln x$ (hint: by parts)
8. After an initial bolus injection of 22 mg of a drug, a patient is placed on a drip delivering 1.2 mg per hour. If the drug is cleared by the patient at a rate of $0.8-0.05 t^{3} \mathrm{mg} / \mathrm{h}$ as a function of time, what is the amount of drug in the patient 4 hours later?

1	2	3	4	5	6	7	8	total (80)	$\%$

