```
Name: _
```

Please show all work. Supply brief narration with your solutions and draw conclusions.

- 1. A researcher starts a bacterial culture in a petri dish. A day later the colony is 40 million strong. The next day it reaches 60 million. Assuming the growth is exponential, what was the initial size?
- 2. The level of a hormone varies according to $s(t) = 4 + 2\cos(0.4t)$ where time t is measured in months. Find and illustrate on a graph
 - (a) Initial size and the size after a month.
 - (b) The instantaneous rates of change at those two times.
 - (c) The average rate of change during that period of time.
- 3. Find the derivatives of

(a)
$$t3^{2^t}$$
 (b) $\frac{\ln t}{\sqrt{t}}$

- 4. Find the second derivative of $f(t) = \frac{1}{t^2 + 1}$ and use it to describe the curvature of the graph of f for $t \ge 0$.
- 5. A population x_t has *per capita* production $\frac{2}{x_t+1}$. Write down the discrete dynamical system for x_t . Find equilibria and do some cobwebbing on a graph to determine their stability. Find the derivative of the updating function. What are its values at each equilibrium? Describe in words what happens in the long run.

Hint: $x_{t+1} = f(x_t)$, where the updating function f is the per capita production times the size.

1	2	3	4	5	total (50)	%

Prelim. course grade: %