Name:

Please show all work. Supply brief narration with your solutions and draw conclusions.

1. A researcher starts a bacterial culture in a petri dish. A day later the colony is 40 million strong. The next day it reaches 60 million. Assuming the growth is exponential, what was the initial size?
2. The level of a hormone varies according to $s(t)=4+2 \cos (0.4 t)$ where time t is measured in months. Find and illustrate on a graph
(a) Initial size and the size after a month.
(b) The instantaneous rates of change at those two times.
(c) The average rate of change during that period of time.
3. Find the derivatives of

$$
\begin{array}{ll}
\text { (a) } t 3^{2^{t}} & \text { (b) } \frac{\ln t}{\sqrt{t}}
\end{array}
$$

4. Find the second derivative of $f(t)=\frac{1}{t^{2}+1}$ and use it to describe the curvature of the graph of f for $t \geq 0$.
5. A population x_{t} has per capita production $\frac{2}{x_{t}+1}$. Write down the discrete dynamical system for x_{t}. Find equilibria and do some cobwebbing on a graph to determine their stability. Find the derivative of the updating function. What are its values at each equilibrium? Describe in words what happens in the long run.

Hint: $x_{t+1}=f\left(x_{t}\right)$, where the updating function f is the per capita production times the size.

1	2	3	4	5	total (50)	$\%$
Prelim. course grade:						$\%$

