Name: _

Please show all work. Supply brief narration with your solutions and draw conclusions.

- 1. A researcher starts a bacterial culture in a petri dish. Three days later the colony is 25 million strong. The next day it reaches 30 million. Assuming the growth is exponential, what was the initial size?
- 2. Find the derivatives of

(a)
$$t^2 7^{3^t}$$
 (b) $\frac{\ln t}{\sqrt{2t^3}}$ (c) $\sin t \cos t$

- 3. Find the second derivative of $f(t) = \frac{1}{t^2 + 1}$ and use it to describe the curvature of the graph of f for $t \ge 0$.
- 4. A population x_t has *per capita* production $\frac{2}{x_t+1}$. Write down the discrete dynamical system for x_t . Find equilibria and do some cobwebbing on a graph to determine their stability. Find the derivative of the updating function. What are its values at each equilibrium? Describe in words what happens in the long run.
- 5. Find all critical points of $\sin x$ in the interval $0 \le x \le 2\pi$. Use f'' to determine whether they are local minima or maxima. Find the global minimum and maximum of f of the interval and state where they occur. Sketch.
- 6. Find indefinite integrals of the following functions

(a)
$$\frac{e^{3x}}{(1-5e^{3x})^2}$$
 (b) $\frac{1}{x(\ln x)^2}$ (c) $t^3 e^{-5t}$

- 7. Determine whether the improper integral $\int_{1}^{\infty} \frac{dx}{x^{\frac{4}{5}} + x^{\frac{6}{5}}}$ converges or diverges. Justify your assertion by comparison to an integral whose convergence or divergence can be determined directly.
- 8. For the autonomous differential equation $dx/dt = x ax^2$, where a is a positive constant, draw the phase-line diagram, find the equilibria, and determine their stability.
- 9. Solve the differential equation $dh/dt = -h^2$ with initial condition h(0) = 2. Sketch the solution and describe its long-term behavior.

1	2	3	4	5	6	7	8	9	total (90)	%