Name: \qquad
Please show all work and justify your answers.

1. Compute the determinant of $\left[\begin{array}{llll}2 & 3 & 0 & 2 \\ 4 & 3 & 2 & 1 \\ 6 & 0 & 0 & 3 \\ 7 & 0 & 0 & 4\end{array}\right]$. Show work. Is this matrix invertible?
2. You are dealt 5 playing cards from a shuffled standard 52 card deck. What are your chances of getting a flush (straight/royal flushes not included)? Explain your reasoning.
3. Prove that for $n \geq 1$
(a) $C(n, 0)+C(n, 1)+C(n, 2)+\ldots+C(n, n)=2^{n}$
(b) $C(n, 0)-C(n, 1)+C(n, 2)-\ldots \pm C(n, n)=0$
4. The likelihood that you stop being a belieber t weeks after becoming one is given by the probability distribution $p(t)=m t+0.2$ for $0 \leq t \leq 10$ (where m is a constant) and $p(t)=0$ for all other t.
(a) Find m.
(b) On average how soon do people stop being beliebers?
(c) If ten thousand people go a Justin Bieber concert and instantly become beliebers, how long after the show will only half of them remain beliebers?

1	2	3	4	total (40)

