Name: \qquad
Please show all work and justify your answers.

1. Solve the recurrence $x_{n}=x_{n-1}+6 x_{n-2}$ subject to initial conditions $x_{0}=2, x_{1}=1$. Check your solution by computing x_{2} and x_{3} using the recurrence relation and comparing the values of $x_{0}, x_{1}, x_{2}, x_{3}$ from your formula.
2. Consider the linear system $x=1-2 y-3 z, 5 y=1-4 x-6 z, 9 z=1-7 x-8 y$.
(a) Find the augmented matrix A for this system.
(b) Use Gauss-Jordan elimination to find $\operatorname{rref}(A)$. Show steps.
(c) Find a parametric formula for the solution set. Sketch and describe the solution set.
3. Let L be the line $y=-3 x$ in the plane. Find matrices A such that $\mathbf{x} \mapsto A \mathbf{x}$ is
(a) orthogonal projection of \mathbf{x} to L,
(b) reflection of \mathbf{x} with respect to L.

In each case compute A^{2} and briefly explain your result geometrically.
4. Let $A=\left[\begin{array}{rr}-7 & 3 \\ -18 & 8\end{array}\right]$.
(a) Find the eigenvalues of A and corresponding eigenvectors.
(b) Let S be the matrix whose columns are eigenvectors of A. Verify that $S^{-1} A S$ is diagonal with entries the eigenvalues of A.
(c) Sketch the eigenspaces and give a geometrical description of the linear map $\mathbf{x} \mapsto A \mathbf{x}$.

1	2	3	4	total (40)

